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Chapter 1

Introduction

This preparatory chapter provides some background material and literature required for
this thesis. For further reading we suggest one of the following books: Vainio & Bian-
chini (2002); Homer (1997); Underwood (1992); Friedrich & Sickles (2000). This chap-
ter is organised as follows. Section 1.1 to 1.5 give general information about breast can-
cer, about screening programmes to detect breast cancer, and about modalities that are
used to image the breast. In Section 1.6 we describe the use of computer aided detection
and diagnosis (CAD) systems and review some important studies that evaluate potential
benefits of using CAD. At the moment multi view CAD systems are being developed that
include information from multiple views. Section 1.7 summarises recent advances in this
field. In this thesis we focus on the design of a multi view CAD system that incorporates
information about temporal changes that take place between two consecutive screening
rounds. Section 1.8 shortly discusses the objective for this approach. Section 1.9 clarifies
definitions and nomenclature used in this thesis. Finally, in Section 1.10, we present an
overview of this thesis.

1.1 Breast Cancer Epidemiology and Risk Factors

Incidence Breast cancer is a very common disease. It is the most common cancer for
females and the second most common cancer for males and females combined. In the
year 2000 it accounted for 22% of all new cancers in women. In the western world, this
percentage is even 27% and about 1 in 10 to 12 women will have to face breast cancer.
In most European countries the aged standardised mortality rates for breast cancer range
from 15 to 30 for every 100,000 women making breast cancer the most important cause of
cancer-related mortality for women (Levi et al. 2004). The average age of women when
they are diagnosed with breast cancer is 64 years. One third of all women diagnosed with
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2 1 INTRODUCTION

breast cancer is younger than 50 years. Breast cancer can also develop in men, although
this is rare. Male breast cancer accounts for about 1% of all breast cancer cases.

In The Netherlands the breast cancer incidence for women is 140 per 100,000. There
are about 12,000 new cases of breast cancer annually and about 3500 women die of the
disease yearly (Dutch Cancer Registry 2003).

Risk Factors for Breast Cancer Although it is not possible to say what exactly causes
breast cancer, some factors may increase or change the risk of developing breast cancer.
These include, in order of importance, female sex, age, having a family history of breast
cancer, and having a previous diagnosis of breast cancer or ductal carcinoma in situ.
Other factors that slightly increase the risk of developing breast cancer are the following:
a long interval between menarche and menopause, obesity, not having children or having
a first child after 35 years of age, not breastfeeding, taking combined Hormone Replace-
ment Therapy (HRT) after menopause (especially when taken for 5 years or longer),
putting on a lot of weight in adulthood, drinking alcohol (more than 2 standard drinks a
day), taking oral contraceptives (this appears to increase the risk only during the period
of taking the pill) and having previously been diagnosed with lobular carcinoma in situ
or atypical hyperplasia.

1.2 Normal Structure and Function of the Breast

Figure 1.1 shows the most important anatomical structures of the breast. The breast
consists of two components. The first component is concerned with milk production
and is known as the epithelial component. The second component consists of fat and
connective tissue. This component supports and protects the structure of the breast.

The epithelial component of the breast consists of a tree-like branching pattern of
milk ducts that come together at the nipple. The leaves of this tree are formed by the
lobules which are the secretory units of the breast. Each lobule consists of a number of
acini connecting to an intra-lobular duct. The acini are composed of two types of cells:
epithelial and myo-epithelial. The epithelial cells secrete a variety of glyco-proteins
and during lactation they also produce milk. The myo-epithelial cells are capable of
contracting during breastfeeding. Each intra-lobular duct connects with an extra-lobular
duct, and this together with the lobule, is called the terminal ductal lobular unit.

The extra-lobular ducts within the same area link together to form sub-segmental
ducts, which in turn form segmental ducts. These ducts drain milk from different seg-
ments or lobes of the breast. In total, the breast consists of 15-20 lobes, which are roughly
pyramidal in shape with the apex directed towards the nipple.

The non-epithelial component of the breast consists mainly of fatty tissue. There are
no muscles in the actual breast, but there are a series of muscles behind and underneath
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Figure 1.1: Anatomy and structure of the breast.

the breasts. These muscles work together with a ligament called Cooper ligament to
support the weight of the breasts.

1.3 Breast Tumours

We distinguish three types of breast tumours: benign breast tumours, in situ cancer and
invasive cancer. Figure 1.2 shows an example of each category.

Benign Diseases Benign tumours of the breast comprise fibro-adenoma, duct papil-
loma, adenoma and connective tissue tumours. The most common benign breast tumour
is the fibro-adenoma. This tumour is a combined product of both connective tissue and
epithelial cells. Most benign masses are circumscribed due to the absence of infiltration.
Figure 1.2(a) shows a characteristic example of a benign mass. The shape is oval and the
border is sharply delineated. On the other hand, benign masses may also present suspi-
cious, as shown in Figure 1.2(b). Mammographically we cannot distinguish this benign
mass from a malignant lesion.
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(a) Benign cyst (b) Benign lesion

(c) DCIS (d) Infiltrative ductal cancer

Figure 1.2: Appearance of breast lesions. Figure 1.2(a) shows a characteristic example
of a benign mass. Figure 1.2(b) shows a benign mass which presents as a malignant
lesion. Figure 1.2(c) shows an example of ductal carcinoma in situ. The last figure shows
an infiltrative malignant cancer with characteristic ill-defined and spiculated borders.
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Non invasive Breast Cancer Non invasive—in situ—cancer consist of malignant cells
that replace the normal epithelial cells lining the ducts or lobules. These malignant cells
are still confined to the basement membrane and have not yet invaded the breast stroma
or lymphatics. There are two non invasive forms of breast cancer: ductal carcinoma in
situ (DCIS) and lobular carcinoma in situ (LCIS).

• Ductal carcinoma in situ (DCIS) is a malignancy of the epithelial cells lining the
lactiferous ducts—usually the terminal ducts—without penetration of the ductal
basement membrane. The prognosis of untreated DCIS is not precisely known, as
most patients are treated with mastectomy. One estimates that about one third to
one half of the untreated patients eventually will develop invasive cancer, usually
in the same quadrant of the breast as the first lesion. Mammographically DCIS is
often characterised by the presence of micro-calcifications. When there is exten-
sive fibrosis, DCIS may also present as a palpable mass.

• In lobular carcinoma in situ (LCIS) we find that the lobules are expanded by a
uniform population of small yet atypical cells. Usually this process obliterates
the lumen of acini. These atypical cells do not penetrate through the walls of the
lobules. LCIS rarely gives rise to mammographic abnormalities. It is often found
in biopsies that have been done for other reasons such as removal of benign lesions.
LCIS is a risk factor for developing breast cancer in either breast. The majority of
patients are therefore managed by careful follow up.

Invasive Breast Cancer Invasive breast cancer, also known as infiltrating cancer, oc-
curs when malignant cells have spread beyond the ducts or lobules to other parts of the
breast or body. Invasive cancers vary in size from less than 10 mm in diameter to over
80 mm, but are usually 20-30 mm at presentation.

Ductal carcinoma accounts for about 80% of all invasive breast cancer cases. These
tumours are believed to arise from epithelial cells of the terminal ductal lobular unit.
It is thought that ductal carcinoma may start as either DCIS or arise de nova. Less
common types of breast cancer include lobular carcinoma, medullary carcinoma, tubular
carcinoma, mucinous carcinoma, cribriform carcinoma and papillary carcinoma.

Breast cancers can infiltrate locally to the skin and the muscle, or metastasise to more
distant sites via lymphatics or the bloodstream. The most common spread via lymphatics
is to the axillary lymph nodes. Metastasis via the blood stream most frequently involves
the lung and the liver, but adrenals and brains are also common sites for metastasis. When
a woman has invasive breast cancer the prognosis depends among others on the histolog-
ical grade and behavioural characteristics of the tumour, and the presence of metastatic
spread . Considering histology we can grade tumours for their degree of differentiation.
Well differentiated tumours often have a better prognosis than tumours that are poorly
differentiated. Behavioural characteristics that influence the prognosis are the growth
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rate and the receptor status of a tumour. Tumours with lower cell growth rates generally
behave better. The presence of oestrogen receptors indicates that the tumour cells have a
higher degree of functional differentiation resulting in a better prognosis. Tumour spread
is also associated with a worse prognosis than when there is no evidence of metastasis.
Although these factors may predict how individual cancers will behave, this has not lead
to an improvement of patient survival. Screening on the other hand might improve sur-
vival rates due to earlier detection of breast cancer. The next section gives an overview
of breast cancer screening programmes and the effect on breast cancer mortality rates.

1.4 Breast Cancer Screening

The aim of breast cancer screening is early detection of breast cancers while keeping
the number of false positive detections at a minimum. The earlier most breast cancers
are detected, the better the prognosis and treatment options for the patient. A higher
recall rate, i.e. the percentage of mammographically screened women that is recalled
for further assessment, generally improves the detection rate. This however will also
lead to an increase in the number of false positive detections resulting in unnecessary
examinations and additional costs. Most countries have recall rates between 3% and 5%.

An important trial to the effect of screening was done between 1977 and 1984 in
Sweden (Tabár et al. 1985). This trial concerned 162,981 women aged 40 and older who
were living in the counties of Kopparberg or Ostergötland. The women were divided at
random into two groups. Each woman in the study group was offered screening every 2
or 3 years depending on age. Women in the control group were not offered screening.
Results obtained after seven years of follow up showed a 31% reduction in breast cancer
mortality and a 25% reduction in the rate of advanced breast cancers for the group invited
to screening. These findings confirmed the results of an earlier trial by Shapiro et al.
(1982). Many countries initiated national screening programmes for breast cancer after
the results of the Swedish two counties trial were published in Tabár et al. (1985). Finland
and Sweden started their programmes in 1986, the United Kingdom in 1988, and the
Netherlands in 1989.

Different trials have been done to determine whether these screening programmes
were achieving their goals. The eight most important trials are the following: Chu et al.
(1988), Alexander et al. (1999), Bjurstam et al. (1997), Frisell et al. (1997), Tabár et al.
(1995), Miller et al. (1992a), Miller et al. (1992b), Andersson et al. (1988), and Ander-
sson & Janzon (1997). Most of these trials show a significant reduction in breast cancer
mortality, especially for women aged 50–70 years. These results have been used to guide
screening programmes world wide. Recently a pair of Danish investigators, Gotzsche
and Olsen, criticised the quality of a majority of these trials (Gotzsche & Olsen 2000;
Olsen & Gotzsche 2001). They found randomisation imbalances and inconsistencies
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in six of the trials. The only trials they considered good were the Canadian trial (Miller
et al. 1992a; Miller et al. 1992b) and the initial trial of the Malmo report (Andersson et al.
1988). These two studies show no benefit from screening mammography. Therefore they
concluded that mammography is ineffective in reducing breast cancer mortality. Various
authors reacted and stated that randomisation was not a major problem. Furthermore
they pointed out that it is difficult to develop and implement a perfect trial. It seems thus
acceptable to include the data from the six criticised trials. These all show a significant
reduction in breast cancer mortality (Jackson 2002).

Although the arguments of Gotzsche and Olsen may not be of substantial importance,
the possible benefits of screening must be weighed against the risks, such as psycholog-
ical trauma of receiving a false positive result, and costs. Furthermore the efficacy of
screening mammography, especially for women in the age group from 40-49 years, re-
mains controversial. In the Netherlands, the United Kingdom, Sweden, and Finland
women from 50 to 70/75 are invited every 2 or 3 years for screening. The American
Cancer Society (ACS) recommends annual mammography for all women beginning at
age 40.

Screening in the Netherlands The Dutch Breast Cancer Screening Programme started
in 1989 and reached its full population capacity in 1997. In the Netherlands the screening
programme offers all women between 50 and 70 years a biennial screen examination,
resulting in 750,000 invited women each year. All women receive a personal letter with
a fixed appointment that can be changed on request. Non attenders receive a reminder
about 2 to 3 months later. At the first screening examination two mammographic views—
medio lateral oblique and cranio caudal—are obtained. At subsequent examinations only
medio lateral oblique views are obtained unless additional views are necessary. Films
are developed immediately at the screening unit. A radiographer judges each film on
technical quality and decides whether additional views are necessary. Afterwards two
radiologists independently read all films in batches. Consensus between the two readers
is required for a referral.

Some studies have been done to evaluate the effectiveness of the Dutch Breast Can-
cer Screening Programme (Otto et al. 2003; Fracheboud et al. 1998; Otten et al. 2005).
Otto et al. (2003) assessed the effect of screening on breast cancer mortality rates, taking
into account the phased implementation of the screening programme. For this purpose
they used population statistics from 27,948 women aged 55–74 who died of breast can-
cer between 1980 and 1999. They found that breast cancer mortality rates started to fall
between 1991 and 1996. This decrease became significant in 1997 and remained so in
subsequent years. Their analysis shows that the point at which breast cancer mortal-
ity rates changed into a downward trend coincided with the start of the screening. This
means that the programme already prevented death from advanced disease in the first
years after implementation of the programme. Fracheboud et al. (1998) studied the fol-
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lowing outcomes of the Dutch screening programme between 1990 and 1995: attendance
rate, detection performance and compliance. In these years the attendance rate was on
average 78% with little differences between screening rounds and age groups. Of 1,000
initially (and two years thereafter) screened women, 13.4 (6.6) women were referred for
further investigation, 9.7 (4.4) got a biopsy and 6.4 (3.4) turned out to have breast cancer.
The positive predictive value of screening and biopsy were 47% (51%) and 66% (78%)
respectively.

A characteristic feature of the Dutch screening programme is the low referral rate
(1.05% of all screened women), which in most other programmes is at least twice as
high. In a recent study Otten et al. (2005) estimated the effect of a change in recall rate
on the detection of breast cancer. For that purpose they used a set of 495 screen negative
mammograms, 250 from control subjects and 245 from women who subsequently devel-
oped breast cancer. Fifteen radiologists with a specialisation in breast cancer screening
read all mammograms. They annotated all suspicious regions and gave each region a rat-
ing. These ratings were used to measure the effect of different recall rates on the detection
of cancers and on the number of false positive detections. Results show that lowering the
threshold for recall, especially for recall rates between 1%-4%, leads to an improvement
in breast cancer detection rates at an acceptable false positive rate. By further increasing
the recall rate they found that cancer detection levels off with a disproportionate increase
in the number of false positive detections.

1.5 Imaging Modalities

At the moment the modality of choice for breast cancer screening is mammography. For
additional examinations, or when mammography is not sufficient, other modalities might
be used. These include ultrasonography (US) and contrast enhanced magnetic resonance
imaging (MRI). In this section we shall give an overview of the different modalities.

Mammography

Mammography is an X-ray technique developed specifically for the breast. It is based on
the differential absorption of X-rays between the various tissue components of the breast
such as fat, connective tissue, tumour tissue and calcifications. Mammography is used
both as a clinical tool to examine symptomatic patients and for screening. Requirements
for mammography are high contrast, high spatial resolution, and minimal radiation expo-
sure. High contrast is needed because differences in density between normal and patho-
logic structures of the breast are small. The detection of micro-calcifications requires
both high contrast as well as a high spatial resolution. Minimal radiation exposure is
essential as in screening programmes women frequently undergo mammography, often
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annually or bi-annually.
Mammographically we can recognise breast cancer by the presence of a focal mass

lesion or micro-calcifications. Below we describe both characteristics. Less frequent
signs of malignancy are architectural distortions and asymmetric breast tissue.

• Mass lesion. Most breast tumours, benign as well as malignant ones, present as
a focal mass lesion. A task of radiologists therefore is to discriminate between
benign and malignant lesions. When a radiologist considers a lesion suspicious for
containing a malignancy the woman will be referred for additional examinations.
The most important sign of malignancy is the presence of spiculation. This is
a stellate pattern of lines directed towards the centre of a lesion. The border of a
mass may also give information about the potential malignancy of a lesion. Benign
masses are often characterised by sharp, circumscribed borders. Malignant masses
on the other hand frequently have ill-defined or spiculated borders. The sharpness
of the border however can not be used as solitary criterion for malignancy as some
malignant masses, for example medullary carcinoma, colloid carcinoma and intra-
cystic carcinoma, have circumscribed borders as well. Moreover benign masses
may have poorly defined margins, for instance due to overlapping breast tissue or
fibrosis. When a lesion is probably benign or when multiple similar masses are
found in the breast the patient is often placed in a follow up protocol. Otherwise
further examination is necessary to determine the nature of the mass.

• Micro-calcifications. Another sign of malignancy is the presence of micro-calcifi-
cations. Micro-calcifications develop in microscopically small cavities inside the
lobuli or ducti. Micro-calcifications inside the lobular unit are often due to benign
conditions such as adenosis or fibro-adenoma. Micro-calcifications of ductal origin
are more suspicious and may be the first sign of breast cancer. Intra-ductal micro-
calcifications can be diagnosed as benign or malignant by analysing the shape of
the cluster and the shape of the individual micro-calcifications. Studies show that
irregular, pleomorphic shapes have a higher probability of being associated with
malignant disease than those with round shapes and uniform size.

Missed Cancers A problem of screening programmes is the large percentage of missed
cancers. Studies show that during screening radiologists fail to detect 15–25% of breast
cancers that are visible in retrospect (Goergen et al. 1997; Bird et al. 1992). Moreover,
when minimal signs are taken into account, estimates of missed cases increase to 50%
(Timp et al. 2002a). The most important causes of these false negative screening ex-
aminations are errors of perception. Eye-tracker studies have classified these errors into
three main categories:

1. Search errors. In these cases the radiologist overlooked the abnormality. Eye-
tracker experiments show that foveal sight never reached the lesion.
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2. Detection errors. The lesion has been seen but the visual dwell time was shorter
than a certain threshold, for instance one second.

3. Interpretation errors. These lesions are consciously evaluated but acted on inap-
propriately.

Without considering recorded eye movements, one may define search and detection er-
rors as those that occur when a radiologist does not report the presence of a visible lesion
and interpretation errors as those that occur when the lesion is reported but not considered
actionable. Recent studies indicate that the majority of errors are due to misinterpretation
and that inefficient search only makes a minor contribution to the error rate (Karssemeijer
et al. 2003; Manning et al. 2004).

Digital Mammography Although most radiologists are still more comfortable with the
use of screen film combinations, disadvantages are obvious. Once an image is printed, it
can no longer be manipulated, and any information available in the digital data but not
captured on the printed image will be lost. Furthermore screen film combinations have
important limitations in detecting subtle soft tissue lesions, especially in the presence of
dense glandular tissue (Lewin et al. 2001).

To overcome these limitations full field digital mammography (FFDM) has been in-
troduced. FFDM offers several advantages over film mammography: easier access to
images, use of CAD, improved means of transmission, retrieval, and storage of images,
and the use of a lower average dose of radiation without a compromise in diagnostic ac-
curacy. In a recent study Pisano et al. (2005) compared the diagnostic accuracy of digital
and film mammography. In this study a total of 49,528 asymptomatic women presenting
for screening underwent both digital and film mammography. Breast cancer status was
ascertained by a breast biopsy or a follow-up mammogram. This study showed that the
overall diagnostic accuracy of digital and film mammography was similar, digital mam-
mography however turned out to be more accurate in women under the age of 50 years,
women with radiographically dense breasts, and pre-menopausal and peri-menopausal
women. The major disadvantage of adopting digital mammography is its cost: at the
moment digital systems cost about 1.5 to 4 times as much as film systems. On the other
hand the fact that a CAD system can easily be incorporated and the possibility of retriev-
ing archived images will reduce costs as well. A cost-effectiveness analysis is needed to
weight the additional costs against the advantages of FFDM and the gain in diagnostic
accuracy.

Ultrasonography

The role of ultrasonography (US) in breast imaging is a subject of ongoing discussion.
US is generally accepted as the method of choice for the differentiation between a simple
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cyst and a solid mass. US also plays a role in guiding intervention procedures such
as needle aspiration, core needle biopsy, and pre-biopsy needle localisation. Another
usage of US is the detection and staging of lymph nodes (Rahbar et al. 1999). Studies
performed to evaluate US as a screening modality failed to establish its efficiency and it
has been concluded that US should not be used as a screening tool. On the other hand US
may play a role when it is used as an adjunct to mammography. Zonderland et al. (1999)
reported an improvement in detection accuracy of 7.4% when US was used as an adjunct
to mammography to analyse lesions from one of the following categories: circumscribed
lesions that could be cysts, mammographically visible lesions, or palpable lesions that
were not visible on the mammogram.

Magnetic Resonance Imaging

High-resolution contrast enhanced MRI of the breast has recently emerged as a sensitive
instrument for the detection of breast cancer. MRI proved useful in screening younger
women with dense breasts who are at a special high risk of developing breast cancer,
e.g. having a strong family history or hereditary risk of breast cancer (Stoutjesdijk et al.
2001). MRI can also be used as an adjunct to mammography for selected patients. Finally
MRI of the breast has the potential to be a powerful aid in pre-surgical planning (multi-
focal cancer detection).

MRI however has a significant false positive rate, is not readily available in all areas,
and is more expensive than mammography or ultrasonography. Other limitations are the
fact that MRI requires contrast injection and that it can cause problems with claustropho-
bia. At the moment MRI therefore remains limited to specific problem solving situations
and patients at high risk for cancer.

1.6 Computer Aided Detection and Diagnosis

In recent years a major effort has been made to develop computer aided detection and di-
agnosis (CAD) programmes to assist radiologists with the detection and characterisation
of breast lesions. Computer aided detection systems identify and mark suspicious regions
to bring them to the attention of a radiologist. These systems prevent that a radiologist
fails to consciously see an abnormality and thus minimise search and perception errors.
Computer aided diagnosis systems on the other hand aim at minimising interpretation
errors.

CAD systems can be used for the detection and characterisation of mass lesions—
including architectural distortions and asymmetry—and for the detection and character-
isation of micro-calcifications. In the sequel we shall restrict ourselves to systems for
mass lesions. Most of these CAD systems follow a two step procedure. The first step
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concerns the detection of suspicious locations inside the breast area. In the second step a
segmentation algorithm determines a contour at the most suspicious locations. For each
segmented region several features are calculated to discriminate between benign lesions,
malignant lesions, and false positive detections.

Currently commercial systems are only available for computer aided detection. These
CAD systems are intended to be used after the radiologist has completed an evaluation
of the images without CAD prompts and has made an initial decision whether recall is
required. If a radiologist identifies an abnormal area of concern on a mammogram during
initial reading and that area does not get marked by CAD, the radiologist is still advised to
interpret the mammogram as positive and to recall the patient for further work-up. CAD
is proposed as an adjunct to mammography to decrease search and detection errors. The
radiologist, not CAD, determines if a clinically significant abnormality exists and de-
cides whether further diagnostic evaluation is warranted. The hope is that these CAD
systems will improve the sensitivity of mammography without substantially increasing
mammography recall rates. In the next section we discuss the effectiveness of systems
for computer aided detection in clinical practice. In the future, CAD systems for com-
puter aided diagnosis will also become available to help radiologists with the diagnostic
process.

1.6.1 Effectiveness of Computer Aided Detection Systems

Two types of studies have been done to evaluate the effectiveness of using computer
aided detection systems in clinical practice: prospective and retrospective studies.

Retrospective Studies These studies retrospectively evaluate the effect of CAD on the
detection of initially missed cancers (Warren Burhenne et al. 2000; Karssemeijer et al.
2003; Brem et al. 2003; Birdwell et al. 2001). Warren Burhenne et al. (2000) conducted
a large retrospective study to potential benefits of CAD on mammographically missed
cancers. For this study they collected more than 1000 screening mammograms that led
to the detection of biopsy-proven cancer. For about half of the cases (427) they also
obtained the prior mammograms for retrospective review. At retrospective review, 67%
(286 of 427) of the breast cancers was visible on the prior mammograms. A panel of
radiologists performed a blinded review to evaluate prior mammograms with a visible
lesion. A CAD systems also analysed these prior mammograms. The recall rates of 14
radiologists were measured with and without using a CAD system. Without CAD the
radiologists had a false-negative rate of 21%. CAD prompting could have potentially
helped to reduce this false-negative rate by 77% without an increase in the recall rate.
Results of this study indicate a potential for CAD to help the breast radiology community
with detecting breast cancers.
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Karssemeijer et al. (2003) estimated the potential contribution of CAD by measuring
the performance of a CAD system in identifying lesions initially missed at screening. For
this purpose they used screening mammograms of 500 cases, consisting of the mammo-
grams at time of referral and all previous screening examinations. A CAD programme
analysed the most recent prior mammograms and assigned each suspicious region a ma-
lignancy score. Ten experienced radiologists also indicated suspicious regions on these
mammograms and rated each finding. The scores were combined in a way to simulate the
following three reading modes: single reading, double reading and reading with CAD.
For single reading the scores from the individual radiologists were used. To simulate
double reading the scores of two radiologists were combined for each finding. For read-
ing with CAD the score assigned to each finding by the radiologist was combined with
the CAD score at the area of the finding. True positive findings of the CAD system that
the radiologists had overlooked were ignored. Results show that the sensitivity of the
radiologists increased by 7.0% for reading with CAD and by 10.5% for double read-
ing compared to single reading. This study shows the potential benefit of CAD for the
detection of breast cancer. Brem et al. (2003) also studied the performance of radiol-
ogists and CAD on missed cancers. For this purpose they used a dataset consisting of
177 missed cancers and 200 normal cases. Three radiologists independently read each
mammogram. The CAD system also marked suspicious regions on each mammogram.
Then they estimated the number of additional tumours that would have been detected
when a radiologist was used as a second reader and when the CAD system was used in
addition to the radiologist. With double reading 123 extra malignancies would have been
detected, with CAD 80. This study shows that both double reading and CAD improve
the detection of cancers. Another study to the effect of CAD on missed cancers has been
done by Birdwell et al. (2001). They analysed the characteristics of 115 missed cancers
and studied the potential utility of CAD. From these 115 missed cancers, 35 were calcifi-
cations and 80 were mass lesions. CAD correctly marked 30 of 35 missed calcifications
and 58 of 80 missed masses. The mean number of marks of the CAD system was 4.3 for
each four view mammogram, of which one third marked the missed cancers.

Although most of these studies report a positive effect of CAD on the detection of
cancers, it is difficult to measure the effect that false positive CAD marks have on screen-
ing outcomes. The majority of these detections will indicate areas that a radiologist will
choose to dismiss because no abnormal appearing characteristics are present. A radi-
ologist however will need extra time to evaluate each CAD mark and some marks will
also appear suspicious to the radiologist. This may increase referral rates which results
in additional examinations and extra costs. To investigate the effect of CAD in clinical
practice prospective studies may be more informative.



14 1 INTRODUCTION

Prospective Studies There are two types of studies that prospectively evaluate the ef-
fect of CAD: sequential reading studies and studies based on historical controls. In se-
quential reading studies radiologists first read each mammogram without CAD followed
by a review of the CAD prompted findings. Freer & Ulissey (2001) did a large study
with 12,860 screening mammograms. All mammograms were first interpreted without
CAD, immediately followed by a re-evaluation of areas marked by the CAD system. The
effect of CAD was measured on recall rate, positive predictive value for biopsy, cancer
detection rate and tumour stage at detection. Freer & Ulissey (2001) found an increase
in recall rate (from 6.5% to 7.7%), no change in positive predictive value, a 19.5% in-
crease in the number of cancers detected and an increase in the proportion of early stage
(0 and I) malignancies from 73% to 78%. Helvie et al. (2004) performed a study with
13 radiologists to evaluate the additional effect of using CAD on a dataset consisting of
mammograms from 2,389 patients. A CAD programme for the detection of masses and
micro-calcifications processed each image and indicated all suspicious regions. Each ra-
diologist read a part of the cases and assessed mammograms first without CAD and then
with CAD. The detection performance of CAD and the radiologists was identical (91%),
corresponding with detecting 10 out of 11 cancers. The detection performance of the
radiologists increased from 91% to 100% when using CAD. A severe limitation of this
study is the small number of cases and consequently the small number of breast cancers.
The cancer that was detected by the CAD system but not by the radiologists was an area
of micro-calcifications identified as ductal carcinoma in situ.

Studies based on historical controls compare the screening performance before and
after the introduction of a CAD system. Gur et al. (2004) assessed changes in mam-
mography recall and cancer detection rates after the introduction of a computer-aided
detection system into a clinical radiology practice. In total they used the outcomes of
24 radiologists who interpreted 115,571 screening mammograms: 59,139 with CAD and
56,432 without CAD. They found that the introduction of computer-aided detection was
not associated with statistically significant changes in recall rate and breast cancer de-
tection rates. It should be noticed however, that the 95% confidence intervals obtained
in this study (-11% to 19%) allow for a wide range of detection rate changes. Recently
Cupples et al. (2005) evaluated the performance of radiologists before and after the intro-
duction of a CAD system. They found that screening with CAD increased the detection
rate by 17.7%, primarily due to increased detection of invasive cancers ≤ 1cm.

1.7 Multi View CAD

Most current CAD systems separately analyse each mammographic view to detect and
characterise abnormalities. Radiologists on the other hand generally combine informa-
tion from multiple mammographic views. Besides images of the left and right breast they
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often have views from previous screening rounds and views from different projections.
When a radiologist discovers a suspicious region in one view, he or she will try to find
a corresponding region in the other views. Views from different projections, typically
cranio caudal (CC) and medio lateral oblique (MLO) views, allow for a better characteri-
sation of each detected region than the use of a single view. Prior views are useful to study
changes in the appearance of a region over time. Contra-lateral views provide a reference
to the appearance of different tissues in the breast and help to determine the relative sus-
piciousness of a region. By combining information from all views radiologists estimate
the suspiciousness of each region and decide whether further investigation is required.
Studies report a positive effect on either recall rate or an improvement in mass detection
performance when using multiple views in mammography screening compared to single-
view mammography, cf. (Wald et al. 1995; Sickles et al. 1986; Thurfjell et al. 2000;
Callaway et al. 1997).

Given the positive effect of multi view systems on radiologists’ performance we ex-
pect that fusion of information from different views will improve CAD systems as well.
There have been some studies to the effect of using multiple views in CAD programmes.
These studies combine information from medio lateral oblique and cranio caudal views
(Good et al. 1999; Paquerault et al. 2002), from left and right views (Yin et al. 1991;
Lau & Bischof 1991; Bovis et al. 2000), or from previous and current views (Vujovic
et al. 1995; Kok-Wiles et al. 1998; Hadjiiski et al. 2001b). The next two paragraphs
summarise work that has been done to combine views from either different projections
or from left and right breasts. Section 1.8 discusses the use of views obtained at different
time moments.

Different Projections of the Same Breast. The most obvious multi view approach is
the combination of information from different projections of the same breast. Common
projections are cranio caudal (CC) and medio lateral oblique (MLO) views. Radiologists
use both views to determine the suspiciousness of a lesion and whether to refer a woman
for further examination. Most CAD programmes only work on single view images and
then combine evidence from both views in the following way. First they assign all de-
tected regions from both projections to the same case. Then the cancer detection rate and
the false positive rate are determined per case. So a tumour (and also a false positive) is
counted as detected when it is found on either view.

Few studies combine evidence from MLO and CC views in a more intelligent way,
for instance by linking similar structures in both breasts. Good et al. (1999) developed
a method to match corresponding regions in CC and MLO views. They first determined
all possible region pairs consisting of one region from the MLO view and one region
from the CC view. Each pair was identified as either a true mass pair or a false mass
pair. A true mass pair consists of two regions which are both projections of the same
mass lesion. A false mass pair is a pair of regions in which either one is a false positive
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detection or—in case multiple tumours are present in the same breast—in which both
regions indicate different mass lesions. For each pair multi view features were calculated.
A Bayesian network classified all pairs exclusively on these features. Results show that
multi view information was useful to discriminate between true and false mass pairs.
Paquerault et al. (2002) used a similar technique, but instead of using only multi view
features they used a fusion scheme to combine the classifier score from the multi view
features with the single view detection score. They found that the fusion information
from the two view detection scheme improved the lesion detectability and reduced the
number of false positives compared to the one view scheme. Van Engeland et al. (2002,
2006) also worked on the combination of information from MLO and CC views. In
2002 they developed a matching algorithm that used feature probability distributions to
link suspicious regions in CC and MLO views. Results from this study show that the
combination of feature vectors from both views slightly improved the mass detection
performance. Recently they presented a new matching algorithm that correctly linked
all true positive detections in 82% of the cases. They however found that the gain in
detection performance was rather low (Van Engeland et al. 2006).

Left and Right Views. Some studies have been done to evaluate the use of information
from left and right views. In general the left and right breasts of a woman are more or less
symmetric. An asymmetric appearance can be suspicious, depending on the underlying
cause. A common cause of an asymmetric appearance is the presence of a visible mass
lesion in one view. According to the BI-RADS system, that is used to guide breast cancer
diagnostics, the word asymmetry should be reserved for cases where the left and right
breast have an asymmetric appearance without the presence of a clearly visible mass le-
sion (D’Orsi & Kopans 1997). The BI-RADS system discriminates between asymmetric
breast tissue and the presence of a focal asymmetric density. Asymmetric breast tissue
is defined relative to the contra lateral breast as a greater volume of breast tissue, greater
density of breast tissue, or more prominent ducts. Asymmetric breast tissue is present on
3% of all mammograms and is nearly always benign (Piccoli et al. 1999). A focal asym-
metric density is visible as an asymmetry of tissue density, but completely lacking the
conspicuity of a true mass. A focal asymmetric density is suspicious as it may represent
a mass lesion with ill-defined or obscured borders.

Some CAD programmes have been developed to determine the degree of asymmetry
between right and left breasts. These programmes often aim to find all kinds of asym-
metries, in particular asymmetry due to the presence of a mass lesion in one view, as this
is suspicious for the presence of a malignancy. The conventional approach is as follows.
First left and right images are registered, for instance by matching the breast boundaries
of each image. This results in a mapping between the two images and makes it possible
to compare features from corresponding locations in left and right breasts. The methods
differ in their choice of image features used for measuring local asymmetry. Yin et al.
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(1991) and Karssemeijer & Te Brake (1998) used brightness; Lau & Bischof (1991) used
brightness and texture. Karssemeijer & Te Brake (1998) only found a small benefit when
using asymmetry as an additional feature in their detection scheme. Instead of comparing
all locations between left and right breasts, radiologists often compare anatomically sim-
ilar regions in both breasts. Miller & Astley (1993) used this approach in a preliminary
study and compared corresponding non fat regions in left and right breasts. For each
region they calculated shape- and grey-level characteristics. They measured the degree
of asymmetry as the difference between feature values of corresponding regions. On
a small set they found that these asymmetry measures were useful for the detection of
masses. To our knowledge, however, no further studies have been published since then
that confirm the usefulness of asymmetry for automated detection of breast lesions.

1.8 Temporal Changes in Breast Tissue

The goal of this thesis is to design a CAD system that captures useful temporal infor-
mation and to investigate the possible benefits of this approach. One of the reasons for
temporal changes in the breast is the growth or development of a lesion. Besides changes
due to developing lesions other factors also influence breast tissue at a given time and may
thus change the radiographic appearance over time. These factors include ageing, invo-
lution, hormonal interactions, and lifestyle indicators such as diet and exercise (Heine &
Malhotra 2002). Therefore when comparing previous and current mammograms, radiol-
ogists should take into account normal changes that occur in breast tissue.

At the moment most radiologists compare current mammograms with previous ones
to improve the detection of tumours and to reduce the number of false positive inter-
pretations. Several studies confirm the usefulness of this approach. In a recent study
Roelofs et al. (2006) retrospectively determined the influence of comparing current mam-
mograms with priors on breast cancer detection. Twelve experienced radiologists each
read 160 mammograms, once with and once without using prior mammograms. Results
obtained in this study show that the number of false positive detections was reduced with
on average 44% when priors were used while maintaining the same sensitivity level. Ac-
cording to Callaway et al. (1997) the presence of previous mammograms significantly
reduces the number of additional examinations and ultrasound examinations. Bassett
et al. (1994) reviewed 1432 randomly selected screening mammography examinations
and evaluated the effect of having priors and found that a comparison with previous ex-
aminations has a positive impact on clinical management and cancer detection in a lim-
ited number of cases. White et al. (1994) found that previous mammograms are judged
valuable in interpreting current studies in 89% of the cases. Some studies also inves-
tigate the additional time and cost involved in obtaining previous mammograms. When
prior mammograms have to be obtained from other facilities this may result in substantial
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labour and cost (Bassett et al. 1994). In the future the use of FFDM and PACS systems
will reduce these costs considerably. This may lead to a more positive cost-effectiveness
analysis. Furthermore, when prior mammograms are easily available, CAD systems that
measure temporal changes can be implemented more easily as well.

Considering the positive effect of prior views for radiologists we expect that CAD
systems may improve as well when temporal information is used. The use of temporal
information may improve the detection and classification performance of a CAD system
for the following reasons. First, comparing the current mammogram with mammograms
from previous screening rounds may bring to attention subtle signs of malignancy such
as a small mass or new or increasing calcifications (White et al. 1994). These changes
be overlooked if the previous mammogram is not available for comparison. Radiologists
often use this technique to detect developing abnormalities. CAD programmes can also
implement this technique to increase the number of true positive detections. Second,
suspicious regions on the current view can be evaluated more precisely when this region
is compared with the corresponding region on the previous view. For example, if a mass
is detected on the current view, a radiologist or CAD system can use the previous view
to determine whether this lesion is new or already existed. If the mass was already
visible on the prior, the size and the contrast of both lesions can be compared to estimate
the malignancy of a lesion. A third advantage of using prior mammograms for CAD
systems is that additional clues can be found to remove false positive detections. Many
false positive detections are caused by mammographic structures that are present on both
current and prior mammograms. These structures will have a similar appearance on both
mammograms. Examples are crossing vessels and benign lymph nodes. Analysis of
temporal changes can be used to measure the similarity between the region on prior and
current views. When both regions are similar, it is likely that the region represents a false
positive detection or a slowly growing benign mass.

1.9 Nomenclature

In this section we clarify some nomenclature that we use in this thesis.

Case A case includes all available mammograms of one woman. Figure 1.3 shows a
case that includes the mammograms from three consecutive mammographic exams. A
mammogram includes all images obtained at the same time. Mammograms often con-
tain two or four views. A two view mammogram usually consists of the right and left
MLO view, whereas a four view mammogram consists of left and right MLO and CC
views. There are two types of mammography exams: screening and clinical. Screening
mammography is an x-ray examination of the breasts in an asymptomatic woman (that
is the woman has no complaints or symptoms of breast cancer). When a radiologist sees
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Figure 1.3: Example of three consecutive mammographic exams of the same woman.
Mammograms are displayed in chronological order. The bottom row represents the di-
agnostic mammogram, this is either a referral or a clinical mammogram. A malignant
lesion is present in the left-MLO image of the diagnostic mammogram and its corre-
sponding prior mammogram. The mammograms from two consecutive screening rounds
form a temporal mammogram pair. This case provides two temporal mammogram pairs.
The bottom and middle rows show the first mammogram pair, in which the diagnostic
mammogram represents the current mammogram. This mammogram pair consists of
two temporal image pairs (left and right MLO current-prior) and two single views (left
and right CC). The top and middle rows form the second mammogram pair, in which the
mammogram prior to diagnosis represents the current mammogram. This mammogram
pair contains two temporal image pairs (left and right MLO current-prior).
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an abnormality on a mammogram he will refer the woman for further examination. This
last screening mammogram is therefore called a referral or recall mammogram. Clinical
mammography on the other hand is an x-ray examination of the breast in a woman who
either has a breast complaint (for instance a breast lump found during self-exam) or has
had an abnormality found during screening mammography. Cancers that are detected be-
tween two screening rounds are called interval cancers. When a tumour is present we call
the most recent mammogram the diagnostic mammogram. For screen detected cancers
this is the referral mammogram; for interval cancers the clinical mammogram.

Mammograms from previous screening rounds are called prior or previous mammo-
grams. When the mammograms from more than one prior screening round are available,
we sometimes number them. Prior I indicates the most recent prior mammogram, prior II
the second most recent prior mammogram and so on.

An expert radiologist re-examined all mammograms in our database and indicated
possibly benign and malignant lesions. All malignant lesions were confirmed by biopsy.
All benign lesions were either proven by biopsy or by additional assessment such as
ultrasound or follow-up. Other findings were assumed to contain no pathology and were
classified as false positive detections.

Temporal Pairs To determine temporal changes we often use mammograms from two
consecutive screening rounds. These form a temporal mammogram pair. The case in Fig-
ure 1.3 contains two temporal mammogram pairs. In each temporal pair we call the most
recent mammogram the current mammogram and the mammogram from one screen-
ing round earlier the prior or previous mammogram. The first temporal mammogram
pairs consists of a diagnostic mammogram and the mammogram one screening round
prior to diagnosis, the prior I mammogram. In this temporal pair we call the diagnostic
mammogram the current mammogram and the prior I mammogram the prior or previous
mammogram. The second mammogram pair consists of the prior I and the prior II mam-
mogram. In this pair we call the prior I mammogram the current mammogram and the
prior II mammogram the prior one.

Lesions A breast lesion is a lump or mass that is either felt by palpation or has been de-
tected by mammography. Mammographically we distinguish three types of mass lesions:
focal mass lesions, architectural distortions and asymmetry. Histologically lesions can
be classified as benign or malignant. A region or finding is a segmented area inside the
breast that has been detected by a radiologist or a CAD system. This region can contain
a benign lesion, a malignant lesion, or normal breast tissue. In the last case we call this
region a false positive detection.
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1.10 Overview of this Thesis

This thesis is organised as follows. Chapter 2 describes our general CAD programme.
This programme detects suspicious regions inside the breast and assigns each region a
measure representing the likelihood that the region contains a mass lesion, the so-called
mass likelihood. The next step in the CAD programme is the segmentation of suspicious
regions. In Chapter 3 we develop a segmentation algorithm based on dynamic program-
ming and compare the efficiency of this algorithm with other segmentation methods from
literature.

In Chapter 4 we analyse the temporal behaviour of mass lesions. First we determine
for each lesion whether it is visible on previous views or not. When a lesion is not
visible on the prior view we determine a location on the prior view that corresponds with
the location of the lesion on the current view. We then determine features for prior and
current regions and study which features change during time and which features stay
constant. We also investigate differences in temporal behaviour between lesions that are
visible on the prior view and lesions that are not.

Chapter 5 to 7 present a CAD programme that includes temporal information. As a
first step each region on the current view is linked to a corresponding location on the prior
view. Chapter 5 describes a regional registration method to accomplish this. The next
steps of the temporal CAD programme are segmentation of prior regions and calculation
of temporal features. Temporal features aim to measure changes and similarities between
a region on the current view and the corresponding region on the prior view. We use
two kinds of temporal features: difference features and similarity features. Difference
features calculate the (relative) change between feature values of the current region and
feature values of the prior region. Similarity features measure whether both regions are
comparable in appearance. Chapter 6 and 7 evaluate the effect of temporal features on
the performance of a CAD system for the detection and characterisation of mass lesions.

The last chapter investigates the potential contribution of a temporal CAD system
in clinical practice to help radiologist with the task of mass characterisation. For this
purpose we compare the following three reading modes: single reading, independent
reading with CAD and independent double reading.





Chapter 2

Single View Computer Aided
Diagnosis 1

In this chapter we explain our single view computer aided diagnosis (CAD) system.
Figure 2.1 gives an overview of the whole method. We start with applying some pre-
processing algorithms to each mammographic image: segmentation of the breast bound-
ary and the pectoral muscle, peripheral enhancement and pectoral fading. Then we apply
a pixel level mass detection algorithm that calculates several features at each location
in the breast area. A neural network classifier combines these features into a single
score, the so-called mass likelihood, which indicates whether the location is suspicious
for containing a mass or not. After that we select the most suspicious locations for fur-
ther processing. This includes segmentation of the image at the selected locations and
calculation of features for each segmented region. Finally a second classifier combines
these features into a malignancy score that represents the likelihood that the region is
malignant. We use this score to evaluate the effectiveness of our CAD programme.

2.1 Pre-processing

The single view CAD programme contains three pre-processing steps. These are illus-
trated in Figure 2.2. In the first, the image is segmented into breast area and background
region. For this purpose we use an algorithm developed by Karssemeijer (1998). This
algorithm applies a global thresholding technique to segment the breast tissue from the
background. Then the location of the pectoral edge is determined. As the acquisition of
mammograms is a standard procedure, we can indicate a region of interest (ROI) where

1A part of this Chapter has been published in Varela et al. (2006)
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Figure 2.1: Overview of single view CAD
method
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the pectoral edge is probably located. Inside this ROI we calculate the gradient mag-
nitude and direction φ by applying the 3x3 Sobel operator. We transform this gradient
image to Hough space using the following line parametrisation:

ρ = m sin(φ) + n cos(φ).

The range of the parameter φ is constrained by the measured gradient direction φm,n at
location (m,n) by:

|φm,n − φ| < δ φ.

After having processed all points in the ROI we discretise the Hough space resulting in a
set of boxes, the so-called Hough accumulators. Each line increments a count (initialised
at zero) in the corresponding Hough accumulator with weight factor w, where w is based
on the gradient magnitude. After considering all pixels inside the ROI, we select the
Hough accumulator with the highest value. The selected peak in Hough space is back-
projected in the image space. The resulting straight line represents the pectoral edge
which segments the pectoral region from the rest of the breast area.

Figure 2.2: Left the original image is shown. The middle figure shows segmentation
of the image into breast area—including pectoral muscle (white)—and background tis-
sue (black). The right figure shows the pre-processed image after pectoral fading and
peripheral enhancement.

In the next pre-processing step we adjust the grey values of the pectoral region to the
grey values of rest of the breast area to make the boundary region more homogeneous.
Without this adjustment problems can arise when calculating contrast measurements for
tumours that are partly inside and partly outside the pectoral region. The algorithm first
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calculates the mean grey value of all pixels inside the pectoral region with equal distance
to the pectoral edge. Then the pixels inside the pectoral region with distance d to the
pectoral edge are normalised as:

ỹ = y + y(0) − y(d),

where ỹ is the normalised grey value, y the original grey value, y(d) the mean grey value
of all pixels in the pectoral region with distance d to the pectoral edge and y(0) the mean
grey value of all pixels that are exactly on the pectoral edge.

Finally, in the last pre-processing step, we apply a peripheral enhancement algorithm
to the breast area to correct for differences in tissue thickness. This algorithm starts with
calculating for each pixel the distance to the breast boundary. The maximum distance is
denoted by dmax. Next we determine the mean grey value g1 and minimum grey value
g2 of all pixels with a distance d > 2

5dmax. We then define a threshold T as

T =
1

2
(g1 + g2)

and adjust all pixels inside the mammogram for which the smoothed grey value ys < T

as:
yp = ỹ + (T − ys),

where ys is obtained by smoothing the original image with a Gaussian filter with a sigma
of 5 mm. The grey value after pre-processing is given by yp.

2.2 Pixel Level Mass Detection Algorithm

After pre-processing we apply a pixel level mass detection algorithm to all pixels in the
breast area. This algorithm calculates at each location two features for the detection
of stellate lesions and two features for the detection of focal masses. A neural network
classifier combines these features into the so-called mass likelihood, which represents the
likelihood that a mass is present at that location. Below we shortly describe the algorithm,
for details see (Te Brake & Karssemeijer 1999) and (Karssemeijer & Te Brake 1996).

Features to Detect Stellate Lesions We use two features to detect spiculation, as this
is a characteristic feature of malignant lesions. The spiculation features are based on
the idea that stellate lesions show a pattern of lines directed towards the centre pixel
of a lesion. To determine whether a spiculated lesion is present at a certain location
(m,n) inside the image, we define a circular neighbourhood around (m,n). We estimate
the line orientation at each location inside this neighbourhood using directional second
order Gaussian derivatives. For spiculated lesions most pixels in this neighbourhood
will have a line orientation towards the centre pixel (m,n). The first feature f1 is a
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normalised measure of the fraction of pixels with a line orientation directed towards the
centre pixel. We call this set of pixels F . For the second feature f2 we divide the circular
neighbourhood into 24 angular sections. This feature measures to what extent the pixels
in set F are uniformly distributed among all angular sections.

Features to Detect Focal Mass Lesions The approach for the detection of focal mass
lesions is similar to the one used for the detection of spicules. We first define around each
location (m,n) in the image a circular neighbourhood. Next we determine the gradient
orientations at each location in this neighbourhood. When a focal mass lesion is present,
pixels in this neighbourhood will have a gradient orientation towards the centre pixel
(m,n). Otherwise the gradient directions will be random. We derive the following two
features from the calculated gradient orientations. The first feature g1 is a normalised
measure of the fraction of pixels with a gradient direction pointing towards the centre
pixel. We call this set of pixels G. The second feature g2 indicates whether the pixels in
set G are uniformly distributed among all angular sections.

Mass Likelihood A simple 3-layer feed-forward neural network trained on known ab-
normalities classifies each pixel using the above described features. The classifier output
represents the likelihood that a mass is present at that location. Therefore we call this
classifier output the mass likelihood. The corresponding image is called the likelihood
image, see for example the middle row images in Figures 6.2 and 6.3. In the likelihood
image each pixel is assigned a grey value corresponding with the mass likelihood, such
that high grey values indicate suspicious locations and vice versa. We slightly smooth
the likelihood image and then select locations with a high mass likelihood for further
processing. When a selected location is closer than 1 cm from another selected location
we remove the least suspicious selection as we expect that both selections belong to the
same suspicious region. We apply the method at a high sensitivity level to ensure that
most mass lesions are found. The average number of selected locations per image is ten.

2.3 Region Segmentation and Feature Calculation

The next step in the CAD programme concerns segmentation of the image at the selected
locations and feature extraction. For segmentation we developed a new method based on
dynamic programming. Chapter 3 describes this method in detail. After segmentation
different features are calculated for each region: local area features, region features, and
border features. Local area features only depend on the selected location. These features
are thus independent of the segmentation. Region and border features on the other hand
do depend on the contour. Region features represent characteristics of the segmented
region; border features specifically aim at characterising the border of a region. We
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use these features for either the detection of mass lesions or for discriminating between
benign and malignant lesions.

2.3.1 Local Area Features

Table 2.1 summarises the local area features used in the single view CAD programme.

Local Spiculation Measures

f1 presence of spiculation: concentration of spicules

f2 presence of spiculation: angular distribution of spicules

Local Mass Measures

g1 presence of a focal mass: gradient concentration

g2 presence of a focal mass: angular gradient distribution

Mass Likelihood Measures

l mass likelihood, presence of a mass lesion

l2 mass likelihood relative to location 1 to 5

l3 mass likelihood relative to location 4 to 8

Location Features

relx relative x location

rely relative y location

skindist shortest distance to the skin line

pectdist shortest distance to the pectoral edge

Table 2.1: Description of the local area features used in our CAD programme. We
calculate these features at the most suspicious locations in the breast area.

Local Spiculation Measures For each selected location we determine the local spic-
ulation measures f1 and f2, see Section 2.2. These features measure to what extent a
stellate pattern is present.

Local Mass Measures For each selected location we determine the local mass mea-
sures g1 and g2, which represent the presence of a focal mass lesion, see Section 2.2.

Mass Likelihood Measures The first mass likelihood measure l—see Section 2.2—is
the output from the neural network classifier and indicates whether a location is sus-
picious for containing a mass lesion. Other mass likelihood measures determine the
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suspiciousness of a location relative to other locations in the breast area. When multiple,
equally suspicious locations are present in the breast area, this might be due to properties
of glandular tissue. A single suspicious location on the other hand is more likely to rep-
resent a real mass lesion. Therefore we first number all suspicious locations in the breast
area in order of increasing mass likelihood, where the most suspicious location is called
loc0, the second most suspicious location loc1, and so on. We determine two relative
likelihood measures l1 and l2 by scaling the mass likelihood l with mass likelihood mea-
sures of other selected locations in the image. For l2 we scale the mass likelihood with
the average mass likelihood of loc1 to loc4. For l3 we scale the mass likelihood with the
average mass likelihood of loc5 to loc8.

Location Features Malignant lesions have a preference to develop in the upper outer
quadrant of the breast (Caulkin et al. 1998). Therefore we include some features that
indicate the location relative to the pectoral edge. For this purpose we define a new
coordinate system which differs for medio lateral oblique (MLO) and cranio caudal (CC)
views. In MLO views the fitted pectoral edge serves as the y-axis, in CC views the
chest wall boundary of the image is taken as the y-axis. For both views the x-axis is
the line perpendicular to the y-axis that has the longest distance from the y-axis to the
breast boundary. The new coordinate system defines the relative x- and y-location of the
centre of each region. To compensate for differences in breast size these coordinates are
normalised with the effective radius of the breast r =

√

A/π, where A is the size of the
segmented breast region.

2.3.2 Region Features

For each region we define the following three sections: the segmented region itself, the
border region, and the surround region. The segmented region contains all pixels inside
the contour. The border region forms a narrow band along the contour and contains all
pixels with a distance of less than 1 mm to the contour, inside as well as outside the
segmented region. Thus including the contour the width of this band is about 2.2 mm.
The surround consists of all pixels outside the segmentation with distance of less than
0.6 r from the contour, where r is the effective radius of the segmented region. The
surround is about twice the size of the segmented region. Figure 2.3 shows a segmented
region and its surround. Table 2.2 summarises the region features. In the sequel we use
the following notation. We denote the set of pixels in the segmented region by I , the
set of pixels on the contour by C, and the set of pixels in the surround by S. N(X) is
the number of pixels in set X . The mean grey level of the pixels in set X is denoted by
y(X), the grey level standard deviation of the pixels in set X by σ(y|X).
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Figure 2.3: A segmentation algorithm determines a contour for each region. The sur-
round consists of all pixels within a distance of 0.6 r from the contour, where r is the
effective radius of the segmented region.

Spiculation Features

f1 mean value of f1 inside segmented region I

f2 mean value of f2 inside segmented region I

Focal Mass Features

g1 mean value of g1 inside segmented region I

g2 mean value of g2 inside segmented region I

Dense Tissue Features

DB fraction dense tissue in whole breast area

DS fraction dense tissue in surround S

ll(I) likelihood ratio between D and F of segmented region

ll(S) likelihood ratio between D and F in surround S

lldiff ratio between L(I) and L(S)

Contrast Features

Int mean grey value of segmented region I

C1 contrast difference between regions I and S

C2 normalised contrast difference

C3 contrast distance between regions I and S

C4 relative contrast difference

C5 relative contrast difference

Table 2.2: Description of region features used for detection and classification. I denotes
the segmented region, S the surround. F and D indicate the set of pixels in the fatty and
dense parts of the breast.
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Gray Level Variance

var1 grey level variance of region I

var2 difference in grey level variance between I and S

var3 grey level variance in I relative to fatty tissue

var4 grey level variance in I relative to dense tissue

Linear Texture

T1 presence of linear texture in I

T2 presence of linear texture in I , normalised

T3 presence of linear texture in S

Border Features

BC continuity of the border of the segmented region

FD average first order directional derivative along border

SD average second order directional derivative along border

Other

ID iso-denseness of the segmented region

size area of segmented region I

circularity (perimeter)2/size

pect location in pectoral area or not

Wolfe estimated Wolfe class

MC number of micro-calcifications present in I

Table 2.2: (cont.) Description of region features used for detection and classification. I

denotes the segmented region, S the surround. F and D indicate the set of pixels in the
fatty and dense parts of the breast respectively.

Regional Spiculation Features For both local spiculation measures f1 and f2 we
determine the average value inside the segmented region. We call these features f1 and
f2.

Regional Mass Features For both local mass measures g1 and g2 we determine the
average value inside the segmented region. We call these features g1 and g2.

Dense Tissue Features Dense tissue features provide information about the presence
of dense tissue in the segmented region and its surround. We use a Gaussian mixture
model to estimate the distribution of fatty and dense tissue in the breast area (Karssemei-
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jer 1998). Based on this model we segment the breast into a fatty part and a dense part,
indicated by F and D respectively. The first two dense features represent the fraction
dense tissue in the whole breast B and in the surround S:

DB =
Nd(B)

Nd(B) + Nf (B)

and

DS =
Nd(S)

Nd(S) + Nf (S)
,

where Nd(X) and Nf (X) are the number of dense and fatty tissue pixels in the set X .
For the dense and fatty parts of the breast we calculate the mean grey level and the grey
level variance. Then we determine for each grey value y the log likelihood ratio between
both tissue types:

ll(y) =
(y − y(F ))2

σ2(y|F )
−

(y − y(D))2

σ2(y|D)
+ log(σ(y|F )) − log(σ(y|D))

The third ll(I) and the fourth feature ll(S) give the mean value of the log likelihood ratio
in the segmented region I and the surround S. The last feature is the ratio between ll(I)

and ll(S):
lldiff = ll(I)/ll(S)

Intensity and Contrast Features The contrast of a region is a useful feature since
tumour tissue absorbs more X-rays than fat and also slightly more than glandular tissue.
The first contrast feature is the mean grey level of the segmented region,

Int = y(I).

We define five distance measures to indicate differences in contrast between the seg-
mented region and its surround. The first distance measure is the difference in intensity:

C1 = y(I) − y(S).

The second distance measure is the squared difference in intensity between the seg-
mented region and its surround, divided by both standard deviations,

C2 =
(y(I) − y(S))2

σ(y|I) + σ(y|S)
.

The third distance measure represents the distance between the grey level histogram of
the segmented region and the surround area,

C3 =
∑

y

|H(y|I) − H(y|S)|,
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where H(y|X) denotes the fraction of pixels in set X with intensity value y. To limit the
number of entries, we divide the intensity range into 82 bins, each containing a range of
50 grey values. The fourth and fifth measure calculate the contrast difference relative to
some dense tissue parameters,

C4 =
y(I) − y(S)

y(D) − y(F )
, C5 =

y(I) − y(S)

σ(y|F )
.

Variance Malignant masses often show little grey level variance compared to normal
breast tissue. Therefore we define some features based on the grey level variance of the
segmented region and its surround. The first feature is the grey level variance in the
segmented region,

var1 = σ2(y|I).

The second feature is the ratio between the variance in the segmented region and its
surround,

var2 =
σ2(y|I)

σ2(y|S)
.

The third and fourth feature calculate the grey level variance of the segmented region
relative to the variance measured in the fatty or dense parts of the breast,

var3 =
σ2(y|I)

σ2(y|F )
, var4 =

σ2(y|I)

σ2(y|D)
.

Linear Texture Normal breast tissue often has different texture characteristics than
tumour tissue. Karssemeijer & Te Brake (1996) developed three texture measures to
capture linear structures as these often indicate the presence of normal breast tissue. To
determine these features we need the map of line orientations and magnitudes that we
constructed for calculating our spiculation measures, see Section 2.2. This map con-
tains for each location in the breast area a vector representing the line orientation and
magnitude. We compute this map at two different scales using second order Gaussian
derivatives with a sigma of 0.3 mm and a sigma of 0.6 mm. We then sum all vectors in
the inside region using the double angle representation, resulting in a final sum vector.
Next we calculate three different linear texture features. The first texture feature T1 is
the magnitude of the sum vector. The second texture feature T2 is the magnitude of the
sum vector divided by the sum of the magnitudes of all vectors in the segmented area.
The third texture feature T3 is the magnitude of the sum vector in the surround area S.

Iso-denseness When dark areas are present inside a segmented region it is likely that
the region is a normal structure. Tumours on the other hand are often dense compared
to the surrounding tissue. Te Brake et al. (2000) developed a feature that measures the
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“denseness” of a segmented region compared to the surround region. This feature first
determines a threshold t that indicates the maximum of the 10% lowest grey values that
are found inside the segmented region:

t = arg max
k

k
∑

y=0

H(y|I) < 0.1.

The iso-denseness feature is the fraction of pixels in the surround area S with a value
lower than the threshold t:

ID =

t
∑

y=0

H(y|S).

A value close to one indicates a high likelihood for the presence of a tumour.

Morphological Features We include two morphological features. The first one is the
size (area) of the segmented region. Studies show that malignant masses on average are
larger than benign ones (Timp et al. 2005). The second morphological feature measures
to what extent the segmented region is circularly shaped. We include this feature because
benign masses often have a round or oval shape compared to a more irregular shape of
malignant masses. We define circularity as

c = p2/A,

where p is the perimeter and A the size of the region.

Pectoral Overlap This feature quantifies to what extent the segmented region is lo-
cated inside or near the pectoral area.

Presence of Micro-calcifications. The presence of micro-calcifications at the location
of a mass lesion is a sign of malignancy. Therefore we use a programme for the detection
of micro-calcifications (ImageChecker, R2 Technology, Sunnyvale (CA)). As feature we
use the number of calcifications found in the segmented region.

Wolfe Class Studies show that there is a relation between parenchymal patterns and
the risk of developing breast cancer. Wolfe defined four types of parenchymal patterns,
ranging from fatty to predominantly dense breasts. We use an automated programme
from Karssemeijer (1998) to classify each breast as one of these parenchymal patterns.
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Border Features Border features are especially useful to discriminate between benign
and malignant lesions. Most benign lesion can be characterised as circumscribed or well-
defined lesions. Margins of these lesions are sharply demarcated with an abrupt transition
between the lesion and its surrounding tissue, which reflects the absence of infiltration.
Malignant lesions on the other hand often have ill-defined or spiculated borders. There-
fore we designed some quantitative measures that indicate to what extent the margin of a
lesion is continuous and circumscribed. These features are described in detail in (Varela
et al. 2005).

2.4 Classifier Training and Testing

The last step of the CAD programme involves training and testing a classifier. To this
end we first select a subset of features appropriate for the task of the CAD system, which
is either detecting masses or classifying masses as benign or malignant. A classifier
trained on known abnormalities combines the selected features into a so-called malig-
nancy score, which indicates the likelihood that a region is malignant. In this thesis we
use different classifiers such as linear discriminant analysis, Support Vector Machines,
k-Nearest Neighbour, and Neural Networks. For further reading the following books can
be consulted: Duda et al. (2001); Bishop (1995); Ripley (1996); Fukunaga (1990). Train-
ing and testing of the classifier are implemented using a cross-validation or leave-one-out
scheme where a part of the dataset is used for training and the other part for testing. In
this way training and testing are done completely independent.

2.5 Performance Evaluation

For performance evaluation we use Receiver Operating Characteristic (ROC) and Free-
response Receiver Operating Characteristic (FROC) methodology. FROC analysis is
used when the CAD system aims at detecting masses; ROC analysis when the CAD
system aims to characterise mass lesions as benign or malignant. Both methods are
described below.

2.5.1 Classification of Masses

To evaluate the performance of the CAD system in classifying masses as benign or ma-
lignant we use Receiver Operating Characteristic (ROC) methodology. Figure 2.4 shows
an ROC curve. ROC curves usually plot sensitivity—also called the true positive fraction
or TPF—as a function of [1-specificity], called the false positive fraction or FPF. We can
evaluate the performance of a CAD system case based, image based, and lesion based.
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Figure 2.4: ROC curve. The horizontal axis represents the true positive fraction (TPF),
the vertical axis the false positive fraction (FPF).

For image based evaluation we use the malignancy scores of single view images to deter-
mine the ROC curve. For case based evaluation we combine the malignancy scores from
the CC and MLO view into a single case based score. The malignancy scores are often
combined by taking the minimum, maximum, or the average of all malignancy scores.
When the breast contains multiple lesions it is better to do a lesion based evaluation. In
this evaluation we only combine the malignancy scores from both views when the le-
sions represent the same underlying mass lesion. For each type of evaluation we can use
the area under the ROC curve—the Az value—as a performance measure for the CAD
system. A value close to one indicates high sensitivity and high specificity.

2.5.2 Detection of Masses

To evaluate the detection accuracy of CAD systems we use FROC methodology. Fig-
ure 2.5 shows an FROC curve. The horizontal axis indicates the average number of false
positive detections per image, the vertical axis the fraction of correctly detected masses
(sensitivity). We use a logarithmic scale for the x-axis to show the performance of the
CAD system at a low number of false positive detections per image. For the FROC curve
in Figure 2.5 we used a dataset consisting of 500 images from women that have been
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referred during screening. This figure shows that almost all tumours are detected at a
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Figure 2.5: FROC curve. The horizontal axis represents the number of false positive
detections, the vertical axis the sensitivity.

high false positive rate. Screening however asks for a referral rate of about 1-5%. The
detection percentage at this referral rate is quite low, which illustrates the problem of cur-
rent CAD systems. Figure 2.5 shows both image and case based curves. For image based
analysis we consider a tumour as detected when the initial detection location is inside the
ground truth. If multiple detections are found inside the same ground truth region they
are considered as a single hit. We count detections outside the ground truth areas as false
positives. For case based analysis we consider a tumour as detected when it is found on
either the CC or the MLO view. To obtain some quantitative performance measure we
can calculate the area under the whole FROC curve or under a part of the FROC curve,
for instance from 0.1 to 1.0 false positive per image. We can use a logarithmic scale for
the x-axis when determining the area under the FROC curve. The advantage of using
a logarithmic scale is that greater weight is assigned to the part of the curve where the
number of false positive detections is low, which corresponds with the operating point
for normal screening situations.





Chapter 3

Mass Segmentation based on
Dynamic Programming 1

An important step in CAD programmes is the segmentation of mammographic lesions.
After segmentation different features can be determined that depend on the contour.
These include the region and border features that have been described in Section 2.3.
Examples are size and contrast of a lesion, or the sharpness of the border. This chapter
presents a robust and fast algorithm to accurately determine the contour of mammo-
graphic lesions. Furthermore we compare this method with two well known segmenta-
tion methods from literature: region growing and the discrete dynamic contour model.
Section 3.2 explains each segmentation method. Then, in Section 3.3, we describe the
experiments to evaluate the different segmentation methods. In the first experiment we
evaluate the segmentation performance of each method by comparing the resulting con-
tour with a manual outline of the lesion. In the second and third experiment we investi-
gate the influence of the segmentation accuracy on the performance of a CAD system for
the detection and characterisation of mass lesions. Section 3.4 presents the results.

3.1 Introduction

Globally segmentation methods fall into two main categories: region based and edge
based. Methods of both categories have been applied to the segmentation of mammo-
graphic masses.

The first category assigns each pixel to a particular object or region. Examples are
split-and-merge algorithms and region growing techniques. Region growing is one of the

1The content of this chapter has been published previously in Timp et al. (2002b) and Timp & Karssemeijer
(2004a).

39
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most popular segmentation methods and many different approaches have been proposed.
Kupinski & Giger (1998) developed two extended region growing techniques, one based
on the radial gradient index and another based on simple probabilistic models. They
tested these methods against a conventional region growing algorithm using a database
of biopsy proven, malignant lesions and found that the new lesion segmentation algo-
rithms more closely matched radiologists’ outlines of these lesions. Guliato et al. (1998)
proposed fuzzy region growing methods for segmenting breast masses and further clas-
sified the segmented masses as benign or malignant based on the transition information
present around the segmented region. Petrick et al. (1999) applied object based region
growing in combination with a density-weighted contrast enhancement filter to segment
all significant structures within the breast. Region based segmentation algorithms have
two main disadvantages. First, small and low-contrast structures have a tendency to grow
into the background and become large regions even though the actual mass is quite small.
An example is given in Figure 3.1(d). The region growing method fails to find the border
of the mass and the resulting segmentation is too large. Second, structures containing
internal gradients do not always grow to the correct border but can end up containing
only a section of the true object.

The second category are edge based algorithms. These algorithms aim at detecting
the boundary of an object. Most algorithms first construct a so-called edge image. In
the edge image each pixel is assigned a value according to the edge strength. Based
on this image, pixels with strong edges are selected and linked to each other. In most
cases the linked pixels will represent object boundaries. A disadvantage of the original
edge based algorithms is that these do not guarantee a closed contour. To overcome this
problem an active contour model (snake) was developed for contour detection. Dynamic
contour models (snakes) have become en vogue with the snake model of McInerney &
Terzopoulos (1996) and have since then been investigated and applied in various ways.
The snake model builds a deformable contour consisting of connected spline segments
and lets the contour approximate a desired form by minimising an energy function con-
taining internal and external energy. The internal energy is the bending energy of the
spline, the external energy is calculated by integrating image features, like the presence
of lines and edges. Lobregt & Viergever (1995) developed a discrete version of the snake
model (discrete contour model) and applied this model to medical images. The main
drawback of these edge based models for the task of mammographic mass segmentation
is that the algorithms heavily depend on being initialised with a contour that is close to
the actual boundary. Otherwise the contour may stick to the first strong edge it finds. An
example is shown is Figure 3.2(c). The initial estimate of the contour, shown in black,
is too far from the mass boundary. As a result the model is not able to find the contour
and instead is attracted to the pectoral muscle. Another known problem with deformable
models is that the model may shrink owing to internal forces, when the edges are not
strong enough or too far from the initial contour.
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(a) Benign mass (b) Manual segmentation

(c) Discrete contour model (d) Region growing

(e) Dynamic programming

Figure 3.1: Segmentation results for a benign mass.
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(a) Benign mass (b) Manual segmentation

(c) Discrete contour model (d) Region growing

(e) Dynamic programming

Figure 3.2: Segmentation results for a benign mass located near the pectoral muscle.
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There are a few studies that compare different segmentation methods (Te Brake et al.
1999; Timp et al. 2002b; Sahiner et al. 2001). In a previous study we compared three
segmentation methods with manual segmentation (Timp et al. 2002b). In that study
we did not evaluate the effect of the segmentation on the classification performance.
Te Brake et al. (1999) compared the discrete contour model from Lobregt & Viergever
(1995) with the region growing algorithms developed by Kupinski & Giger (1998) and
evaluated the methods by comparing them to manual segmentation. Furthermore they
studied the effect of the segmentation on the cancer detection performance. One of the
region growing methods and the discrete contour model performed equally well in the
segmentation task. In the detection experiment the discrete contour model had a higher
performance in classifying each segmented region as normal or abnormal. Sahiner et al.
(2001) compared a mass segmentation method based on an active contour model with
manual segmentation and studied the effect of the segmentation on the classification
accuracy. They found that the classification performance obtained with features extracted
from a manually or an automatically segmented region were nearly identical.

In this study we develop a new segmentation method to overcome the problems of
region growing and the discrete contour model. The new method uses both edge based
information as well as a priori knowledge about the grey level distribution of an ROI
(region of interest) around the mass. We select the best contour using an optimisation
technique based on dynamic programming. To test the performance of this method, we
compare our proposed method with region growing and the discrete contour model using
an area overlap criterion. Furthermore we study the effect of the segmentation on the
detection and characterisation of mammographic masses.

3.2 Segmentation Methods

In this section we describe the three segmentation methods used in this work. The first
subsection describes the dynamic programming approach. In the second and third sub-
section we briefly review the region growing method and the discrete contour model.

3.2.1 Dynamic Programming

Dynamic programming is an optimisation technique that can be used to find the boundary
of objects (Ballard & Brown 1982). For this purpose the boundary definition problem is
first formulated as a graph searching problem. The dynamic programming algorithm then
finds the optimal path between a set of start nodes and a set of end nodes of this graph.
Typical applications of the use of dynamic programming in boundary tracking problems
are tracing borders of elongated objects like roads and rivers in aerial photographs and the
segmentation of handwritten characters. Medical applications include the segmentation
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of spine boundaries and tracing vessel borders.
In this study we apply dynamic programming to find the boundary of a mass. Most

mass lesions are approximately circular in shape. We implement this circularity con-
straint by carrying out the calculations in polar space. We first determine the centre of
the mass lesion (µx, µy). Then we define a circular region of interest (ROI) with centre
(µx, µy) and radius R. The radius should be large enough to allow application of the
algorithm to masses of different sizes. We choose a radius of 2.4 cm. Next we transform
the circular ROI to a polar ROI where the x-axis represents the angle from −π to π and
the y-axis the radius r from 0 to R. Figure 3.3(a) and 3.3(b) show the coordinate trans-
form. Finally the dynamic programming algorithm finds the optimal path from one of
the pixels in the first column to one of the pixels in the last column of the polar ROI. We
consider a path as optimal when the cumulative costs—that is the sum of the local costs
of all pixels along the path—are minimal. The next section describes the local cost.

Local Cost

For each pixel in the polar image we calculate three cost measures, which represent
characteristics of a good boundary. These three cost measures together form the local
cost for each pixel c(i, j):

c(i, j) = wee(i, j) + wss(i, j) + wgg(i, j), (3.1)

where e represents the edge strength, s the deviation from the expected size, and g the
deviation from the expected grey level. The weights for the components are given by we,
ws and wg . The cost measures are chosen such that pixels that possess many character-
istics of the searched boundary are assigned low cost and vice versa. Below we describe
each cost measure.

• Edge Strength e(i, j) We assign pixels with strong edge features low cost as this
may indicate the presence of the contour. To determine the edge strength we first
determine for each pixel the gradient magnitude y′ in the direction normal to the
contour. In the polar image this corresponds with the gradient magnitude in vertical
direction. Then we select the 99th percentile of all gradient magnitudes in the ROI.
We call this value max(y′). We obtain the relative edge strength by normalising the
gradient values in the ROI with max(y′). This normalisation ensures that subtle
contours with low global but high local edge strength can be found as well. By
taking the 99th percentile it is prevented that one outlier, for instance a very bright
micro-calcification, decreases the relative edge strength of all other pixels in the
ROI. We invert the normalised gradient value such that high gradients produce low
costs and vice versa. The final gradient cost measure is:

e(i, j) =
max(y′) − y′(i, j)

max(y′)
.
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• Deviation from expected size s(i, j) We assign contours with a size that is common
for masses a low cost value. On the other hand, masses that are very small or very
large are assigned higher cost. Most masses have a radius between 5 mm and
15 mm, with a mean radius r of about 9 mm (Timp et al. 2002a). We use the
following size measure in the cost function:

s(i, j) =

{

(j − r)2 : j < m

(m − r)2 : j ≥ m

where r is the mean radius of masses, that is 9 mm. In the polar image j represents
the distance from pixel (i, j) to the centre of the mass (µx, µy). We set the maximal
distance to m to prevent that the size component of the cost function completely
determines the value of the cost function for large masses. We use m = 15 mm.
Alternatively we could determine this cost measure by estimating the distribution
function of the size of masses. In that case we could base the cost value for each
pixel (i, j) on the relative frequency of masses with size j. To estimate this size
distribution however we need a large representative database with benign and ma-
lignant masses of known size. Currently we use the first method as we do not have
an independent database that we can use for this purpose.

• Deviation from expected grey level g(i, j) Another predictable characteristic of
the mass boundary is its grey level. We first estimate the grey level of the border
and then calculate for each pixel the deviation from this expected grey level. A
common assumption is that the border is located at the zero crossing of the sec-
ond derivative of the edge profile. Claridge & Richter (1994) however found that
in projective images the real edge is located more towards the darker side (back-
ground). Consequently, the grey value of the border will have a value closer to
the background grey level than to the grey level of the mass region. Therefore we
determine the preferred grey level of the border yp as follows:

yp = α y(M) + (1 − α) y(BG),

where y(M) and y(BG) are estimates of the mean grey level of the mass region
(M) and the background tissue (BG). The value of α should be smaller than 1/2

to ensure that the edge is located more towards the background level. We use
two methods to estimate the grey level of the mass and the background tissue. In
the first method we use a circle with centre (µx, µy) and radius 0.6 cm. We cal-
culate the mean grey level inside and outside this circle and use these values as
estimates for y(BG) and y(M). In the second method we use histogram analysis
to estimate the grey level distributions of the mass and the background tissue. The
histogram of the ROI contains pixels from both the inside and the outside region.
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Therefore we can model this histogram reasonably well by a mixture of two Gaus-
sian distributions, one narrow Gaussian in the low intensity range representing the
fatty tissue, and a broader one in the middle/high intensity range representing the
mass lesion. We estimate the parameters for the Gaussian distributions with the
Levenberg-Marquardt method. We use the first peak in the histogram to estimate
y(BG), and the second peak to estimate y(M). When the histogram can not be
modelled by a mixture of two Gaussians we use the first method to estimate the
preferred grey level. The grey level cost measure for each pixel is:

g(i, j) =
√

|y(i, j) − yp|,

where y(i, j) is the grey value of the pixel (i, j).

Dynamic Programming Path Finding Algorithm

We first apply the cost function Eq. 3.1 to all pixels in the polar ROI. We then obtain the
so-called cost image, as shown in Figure 3.3(c). The dynamic programming algorithm
finds the optimal path in this image which corresponds with the best contour for this cost
function. Pixels in the first column of the cost image (φ = −π) represent the start nodes
for the algorithm, whereas the end nodes are represented by the pixels in the last column
of the image. The cumulative cost matrix C stores the cumulative cost of each path.
Figure 3.3(d) shows the cumulative cost matrix. We construct this matrix in two steps.
First we set the cumulative cost of pixels in the first column:

C(i,−π) = c(i,−π),

where C(i, j) is the cumulative cost and c(i, j) the local cost for pixel (i, j) in the polar
image. For the other pixels we calculate the cumulative cost by a recursive step:

C(i, j + 1) = min
−2≤l≤2

C(i + l, j) + c(i, j + 1) + h(l), (3.2)

where l is the direction of the path. In this application the value of l falls inside the inter-
val [−2, . . . , 2]. The function h(l) is an increasing function as value of |l| and controls
the smoothness of the path. We use the path with the lowest cumulative cost as our final
contour. The end point C(i, π) of this contour is the pixel with the lowest cumulative
cost value of all pixels in the last column. We find the optimal path by back tracing the
path from the end pixel to one of the pixels in the first column. Figure 3.3(e) shows the
final path in the cumulative cost matrix. Figure 3.3(f) shows the resulting segmentation
in the original image.

Final Contour The dynamic programming algorithm does not guarantee that the final
contour is closed. In our application we consider a contour as closed when the distance
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(a) ROI with a benign mass (b) Polar ROI

(c) Cost matrix (d) Cumulative cost matrix

(e) Path found by the dynamic pro-
gramming segmentation algorithm

(f) Final contour

Figure 3.3: Implementation of the proposed dynamic programming algorithm.
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between the start and the end point is less than 3 pixels. This is conform the interval
of the direction parameter l. In most cases, especially when the mass is clearly visible,
the algorithm will find a closed contour. When the mass is ill-defined or when other
structures obscure the mass boundary, the segmentation programme can fail to find a
closed contour. Figure 3.4 illustrates this problem. The small mass in the middle of the
image is surrounded by some dense tissue. Figure 3.4(b) shows the polar image, with the
resulting contour plotted on top of it. In the beginning the path is attracted to an image
structure and deviates from the true mass boundary. As a consequence the contour is
not closed and contains some extra tissue. Figure 3.4(d) shows the final contour on the
original image.

There are some methods to guarantee the contour to be closed. One of the methods
is to calculate the optimal path for each radius r = [0, . . . , R] under the constraint that
the start and the end point are (r,−π) and (r, π) and thus have the same r-coordinate.
The method works as follows. For a chosen value of r extra cost is added to all points in
the first column of the cost matrix except to the point (r,−π). Then the cumulative cost
matrix is constructed. The optimal path is found by back tracing the path from the end
point (r, π). The extra cost ensures that the path is back traced till the start point (r,−π).
This results in a path with start point (r,−π) and end point (r, π). We call the cumulative
cost associated with this path Cr. After having determined the cumulative cost for each
value of r we select the path with the lowest cumulative cost Cr. This path represents the
final contour. We call this the constraint algorithm. A disadvantage of this method is that
the algorithm has to be applied once for each value of r which makes it computationally
expensive.

We designed a more efficient method to ensure that the resulting contour is closed.
Our solution uses an extended cost matrix where the cost matrix runs from −βπ to βπ.
The extension factor β determines the size of the extended cost matrix relative to the
original cost matrix. We use the dynamic programming algorithm to find the optimal path
in this extended cost matrix and extract the path from −π to π as our final contour. In the
original cost matrix the final contour depends strongly on the initial angle of the polar
coordinate transform—in our case this is −π—and the resulting segmentation might be
different for different initial angles. A disadvantage of this dependency is that image
features near the boundaries of the interval [−π, . . . , π] can have undesirable effects on
the resulting contour. In the new method we minimise the dependence on the initial
angle. Consequently image features near the boundaries of the interval have less effect
on the final contour. Another advantage of this method is that discontinuities at −π and
π are avoided which in turn may lead to more closed contours.

To determine the efficiency of this method we set up the following experiment. For
each extension factor β we apply the dynamic programming algorithm to find the opti-
mal contour. Afterward, we calculate for each extension factor the percentage of closed
contours.
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(a) Original image (b) Polar image from −π to π

(c) Polar image from −3π to 3π

(d) Contour as extracted from the
polar image from −π to π

(e) Contour as extracted from the
extended polar image

Figure 3.4: The original dynamic programming segmentation algorithm does not guar-
antee a closed contour. In this example the optimal path is attracted towards some dense
tissue and the resulting contour is not closed. The new algorithm extracts the contour
from an extended cost matrix resulting in a closed contour.
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3.2.2 Region Growing

Region growing is one of the most popular segmentation methods. Region growing takes
an image and a seed point (sx, sy) as input. The seed point (sx, sy) is defined to be
within the suspect region R. Region growing then grows the seed regions in an iterative
fashion. At each iteration the pixels that border the growing regions are examined. Con-
ventional region growing defines several region partitions Ri based solely on grey level
information in the image:

Ri = {y(i, j) > ti},

where y(i, j) is the pixel grey level and ti is the grey level threshold for partition Ri.
For each partition features are calculated such as circularity and size. Based on these
features the partition that best characterises a mammographic lesion is selected as the
final segmentation.

We implemented an extended version of the algorithm developed by Kupinski &
Giger (1998). In this method the partitions are created using grey level information as
well as prior knowledge about the shape of typical mass lesions. To include information
about the shape of mammographic lesions, the region is pre-processed by multiplication
with a Gaussian centred at (sx, sy). The partitions returned by thresholding are now
more compact than before because distant pixels are suppressed. To determine which
partition best delineates a mammographic lesion a likelihood measure is used. This mea-
sure estimates the grey level distribution for grey levels inside and outside the region
for each partition. The partition that maximises this likelihood is selected as the final
segmentation.

3.2.3 Discrete Contour Model

The active contour model (or snake) formulates the boundary detection issue as an en-
ergy function minimisation problem (McInerney & Terzopoulos 1996). We implemented
a discrete version developed by Lobregt & Viergever (1995), the discrete contour model.
Starting from an initial shape the discrete contour model actively modifies its shape ap-
proximating some desired contour. Internal and external forces together determine the
final shape deformation.

The basic structure of the model is a set of vertices vi which are connected by edges
di, see Figure 3.5. The unit vector d̂i describes the direction of di. For each vertex i with
connecting edges di and di−1 a local coordinate system is constructed represented by a
tangential unit vector t̂i

t̂i =
d̂i + d̂i−1

‖d̂i + d̂i−1‖
,
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Vi Vi+1d̂i

d̂i−1

di

t̂i

r̂i

Vi−1

di−1

Figure 3.5: Part of the discrete dynamic contour model. The discrete dynamic contour
model consists of a set of vertices vi that are connected by edges di.

and a radial unit vector r̂i

r̂i =

[

0 1

−1 0

]

t̂i.

The internal force is based on the local shape of the contour, and aims at minimis-
ing local curvature. The local curvature li for vertex vi is the difference between the
directions of the two edge segments that join at that location:

li = d̂i − d̂i−1.

Local curvature therefore, has direction equal or opposite to the radial vector r̂i. To pre-
vent the contour from imploding, vertices in parts of the contour with constant curvature
should have an internal force of zero. To achieve this, the internal force of vertex vi is
computed by combining its local curvature with the local curvature of the two neighbour
vertices in a local coordinate system:

fin,i = {−
1

2
(li−1r̂i−1) + lir̂i −

1

2
(li+1r̂i+1)}r̂i.

The external force fext,i is based on the image gradient magnitude. This force moves
the vertices to locations in the image with strong gradients: the edges of the mass. Com-
putation of the external force is done in the radial direction, as this prevents vertices from
moving along the contour.

The total force fi acting on vertex vi is a weighted combination of external and
internal forces. As a result of this force the vertex vi will start to move and change its
position. The deformation process stops when the system reaches a stable state.
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3.3 Experiments to Evaluate Segmentation Methods

We performed four experiments to evaluate the performance of the dynamic program-
ming method. In the first experiment we estimate the value of the extension factor that
is needed to guarantee a closed contour. In the second experiment we quantitatively
analyse the segmentation performance of the new method compared with the other two
methods—region growing and the discrete contour model—using an overlap criterion.
We did two additional experiments to evaluate the effect of the segmentation on the abil-
ity of the CAD system to detect and characterise mass lesions. The next subsection
first describes the dataset used for the experiments. The other subsections explain each
experiment in more detail.

3.3.1 Database

The mammograms used in this study all came from the Dutch Breast Cancer Screen-
ing Programme. All women aged 50-70 are invited bi-annually to participate in this
programme. Two mammographic projections—medio lateral oblique (MLO) and cranio
caudal (CC)—are obtained at the initial screening in this programme. At subsequent
screenings only medio lateral views are obtained, unless there is an indication that addi-
tional cranio caudal views would be beneficial. The mammograms were digitised with a
Canon laser scanner at a pixel resolution of 50 µm, and averaged down to a resolution of
200 µm maintaining the original grey value resolution of 12 bits.

The total dataset consisted of 1427 two view and four view mammograms, resulting
in a total of 4295 images. We excluded images with only micro-calcifications. The re-
maining set consisted of 1152 images each containing at least one biopsy proven mass,
called the mass dataset, and 2822 normal images without pathology, called the normal
dataset. The mass dataset contained a total of 1210 masses, 551 malignant and 659 be-
nign, including spiculated, circumscribed, and ill-defined masses, ranging from obvious
to very subtle. An expert radiologist manually segmented all 1210 masses on a dedicated
mammographic review station. We used these annotations as the ground truth for our
experiments. The centre of each annotation (µx, µy) was used as seed point for the dy-
namic programming and region growing segmentation algorithm. The discrete contour
model was initialised with a circular region with centre (µx, µy) and radius 0.6 cm.

3.3.2 Extension Factor for Closed Contours

In the first experiment we estimate the minimum value of the extension factor β needed
to guarantee that almost all contours are closed. For this purpose we vary β and apply
the dynamic programming algorithm to the extended cost matrix from −βπ to βπ. We
then extract the path from −π to π as final contour. For each extension factor β we
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calculate the percentage of closed contours. We consider a contour as closed when the
distance |r1 − r2| between the start point (−π, r1) and the end point (π, r2) is less than
three pixels. To estimate an appropriate value for β we calculate the percentage of closed
contours for each value of β for all images that contain a mass lesion. We then select the
minimum value of β for which almost all contours are closed.

3.3.3 Segmentation

In the second experiment we evaluate the segmentation performance of all three segmen-
tation methods using an area overlap criterion. The used dataset for this experiment is
the mass dataset, that is the set of images that contain at least one mass lesion. The seg-
mentation performance of each method is evaluated with the following overlap criterion:

O = (S ∩ T )/(S ∪ T ),

where O is the overlap fraction, S the region obtained by one of the segmentation algo-
rithms and T the manually segmented region. An overlap fraction close to one means
a good match between the two regions. We use the two-sided Wilcoxon test with con-
fidence level 0.95 to asses the difference in overlap fraction between two segmentation
methods.

3.3.4 Mass Detection

The third experiment was done to study the influence of the segmentation method on the
mass detection performance. The dataset for this experiment consists of normal images
and images with at least one malignant lesion, that is the normal dataset and the malig-
nant mass dataset. In this experiment we first apply the single view CAD algorithm to
each image to find the most suspicious locations inside the breast area, see Section 2.2.
The coordinates of the selected locations are used as seed points for the segmentation al-
gorithms. After segmentation several features are determined to classify each segmented
region as normal or malignant.

We use cross-validation to randomly partition the dataset into a training set and a test
set on a 10:1 ratio under the constraint that the images from the same patient are grouped
into the same subset. The training set is used for feature selection and classifier training,
the test set for classifier validation.

For feature selection we use a k-nearest neighbour (KNN) algorithm in a leave-one-
out basis to select the most useful features from the entire feature space. Selection was
done with a sequential forward procedure, which means that new features are added
when they increase the performance of the classifier. A KNN classifier then combines
the selected features into a malignancy score, representing the likelihood that a region is
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malignant. FROC analysis was done to determine the performance of the CAD system
for the different segmentation methods.

3.3.5 Benign/Malignant Classification

In the last experiment we investigate whether the segmentation methods influence the
performance of the CAD system in classifying lesions as benign or malignant. For
this experiment we use the mass dataset, which consists of benign and malignant le-
sions with known ground truth. For each segmented lesion several features are cal-
culated. For classification we use the same procedure as described above for the de-
tection experiment: KNN based feature selection and classification. ROC analysis is
done to evaluate the classification performance for each segmentation method. We used
the LABROC programme to determine ROC curves, and the CLABROC programme to
evaluate the statistical significance between the different methods (Metz et al. 1998a;
Metz et al. 1998b).

3.4 Results

3.4.1 Percentage of Closed Contours

In the first experiment we determined an optimal value for the extension factor β. Fig-
ure 3.6 shows the percentage of closed contours for several values of β, ranging from
one to three. This figure shows that about 40% of the contours is immediately closed.
This percentage increases and reaches 98% for β = 2. The maximum number of closed
contours is reached for β = 3. At that time there was only one contour not closed and
another contour was found closed but instable. Figure 3.7 shows both cases. The top row
shows the case where the dynamic programming algorithm was unable to reach closure.
Figure 3.7(a) shows the manual segmentation of this mass, Figure 3.7(b) the contour of
the proposed algorithm. For this contour we applied the constraint dynamic program-
ming algorithm to force a closed contour, see Section 3.2.1. Figure 3.7(c) shows the final
contour obtained with the constraint algorithm. The bottom row of Figure 3.7 shows the
case where the final contour was closed but not stable. The contour alternated between
two states for different values of β and thus depended on the initial angle of the coordi-
nate transform. Figure 3.7(d) shows the manual segmentation of the mass. It is a benign
mass embedded in dense tissue. Figure 3.7(e) and 3.7(f) show the different states of the
contour. The contour in Figure 3.7(e) is too large and contains some dense tissue around
the mass. The other state, shown in Figure 3.7(f), gives a correct segmentation.

For the experiments described below we applied the algorithm with β = 3 and thus
used an extended cost matrix from −3π to 3π.



3.4 RESULTS 55

1.0 1.5 2.0 2.5 3.0

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

PSfrag replacements

Extension factor β

fr
ac

tio
n

co
nv

er
ge

d
co

nt
ou

rs

Figure 3.6: The percentage of closed contours is plotted against the extension factor
β. In the original dynamic programming algorithm (with β = 1.0) 40% of the contours
is closed. In the improved algorithm where the path is calculated over a larger area
(β = 3.0), more then 99% of the contours is closed.

3.4.2 Segmentation Performance

Table 3.1 gives the segmentation performance for each method measured as the overlap
fraction with the ground truth. The average overlap fraction for dynamic programming

Method Min. 1st Qu. Median Mean 3rd Qu. Max.

dynamic programming 0.005 0.608 0.747 0.687 0.825 0.940

discrete contour model 0.006 0.494 0.633 0.599 0.743 0.913

region growing 0.034 0.460 0.641 0.586 0.748 0.914

Table 3.1: Summary statistics for the performance of the three segmentation methods
based on an area overlap criterion measuring the overlap between the automated seg-
mentation and the manual segmentation.

was 0.69, for the discrete contour model 0.60 and for region growing 0.59. These re-
sults indicate that the dynamic programming method is more suited to segment mam-
mographic masses than the other two methods. Figure 3.8 displays the overlap fractions
for the different methods. The figure shows that not only the mean overlap fraction is
higher, but also that the percentage of masses with poor overlap is smaller for dynamic
programming than for the other two segmentation methods.
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(a) Ground truth (b) Proposed algorithm (c) Constraint algorithm

(d) Ground truth (e) State 1 of the contour (f) State 2 of the contour

Figure 3.7: Cases where the dynamic programming algorithm did not find a closed or
stable contour. The upper row shows the case where the dynamic programming algorithm
was unable to find a closed contour. Figure 3.7(a) shows the manual segmentation, 3.7(b)
the proposed algorithm and 3.7(c) the constraint algorithm. The bottom row shows the
case where the final contour alternated between two states 3.7(e) and 3.7(f).



3.4 RESULTS 57

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

2.
0

3.
0

PSfrag
replacem

ents

D
en

si
ty

Overlap fraction

DP

RG
DC

Figure 3.8: Distribution of the overlap fractions for the different segmentation methods.
The average overlap fraction for dynamic programming (DP) is higher then for region
growing (RG) and the discrete contour model (DC)

We used the two-sided Wilcoxon test to determine whether the difference in overlap
fraction was statistically significant. Table 3.2 shows the results. The difference in over-
lap fraction between the proposed method and the other two methods was statistically
significant (P � 0.05). Although the discrete contour model had better results than the
region growing method, these results were not statistically significant.

Methods P-value Conf. Interval

dynamic programming - discrete contour model � 0.05 [0.081, 0.11]

discrete contour model - region growing 0.6507 [−0.01, 0.01]

dynamic programming - region growing � 0.05 [0.08, 0.11]

Table 3.2: Results of the Wilcoxon’s test for the statistical difference in overlap fraction
between the existing methods and the proposed method. The second column gives the
P-value, and the last column the 95% confidence interval for the difference in the means.
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3.4.3 Mass Detection Performance

The FROC curve in Figure 3.9 shows the case based detection performance for the dif-
ferent segmentation methods. The horizontal axis gives the number of false positive
detections per image, the vertical axis the sensitivity. In case based evaluation a lesion is
considered detected if it is detected on either view. This figure shows that the detection
performance is nearly identical for all three segmentation methods.
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Figure 3.9: FROC curves for the different segmentation methods: dynamic programming
(dp), region growing (rg) and discrete contour model (dc)

3.4.4 Benign/Malignant Classification Accuracy

In the last experiment we studied whether the used segmentation method influenced
the ability of the CAD system to discriminate between benign and malignant lesions.
For each segmentation method we constructed an ROC curve with the freely available
LABROC programme (Metz et al. 1998b). As performance measure we used the area
under the ROC curve (Az value). Figure 3.10 shows case based ROC curves for the
different segmentation methods. Table 3.3 summarises the corresponding Az values.

For image based evaluation the Az value was 0.74 for dynamic programming, 0.67
for region growing and 0.71 for the discrete contour model. The average Az value for
case based evaluation, where different views of the same lesion are combined by the
classifier, was 0.74 for dynamic programming, 0.67 for region growing and 0.72 for
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Figure 3.10: Case based ROC curves for the three different segmentation methods: dy-
namic programming, region growing and the discrete contour model. The horizontal axis
gives the false positive fraction, the vertical axis the true positive fraction (sensitivity).

Method Image Based Az Case Based Az P-value

dynamic programming 0.72 0.74

discrete contour model 0.71 0.72 0.20

region growing 0.67 0.67 0.0044

Table 3.3: Az value that indicates the area under the ROC curve for the different seg-
mentation methods. The last column gives the results of the CLABROC programme that
measures the difference in Az value between the proposed method and existing methods.
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the discrete contour model. We used the CLABROC programme ((Metz et al. 1998a)
to evaluate the statistical significance of differences in classification performance. We
found that the difference in Az values between the region growing and the dynamic pro-
gramming method was statistically significant (P = 0.0044, two-tailed). The difference
between the dynamic programming method and the discrete contour model was not sig-
nificant (P = 0.20), neither was the difference between the discrete contour model and
region growing (P = 0.08).

3.5 Discussion

In this work we developed a segmentation algorithm based on dynamic programming to
accurately extract mammographic mass contours. In addition we developed a method to
obtain closed contours. We found that with our proposed method 99.9% of the contours
was closed when we used an extended cost matrix with β = 3.0. As this percentage did
not change for larger values of β, we used β = 3.0 in the other experiments. Another
option would be to set β = 2.0 and increase β for contours that are not closed. A
disadvantage of this is that some contours might be closed but instable for β = 2.0,
that is the contour might change for other values of β. We consider these contours as
suboptimal. It depends on the application to make a balance between optimality and
speed. In our application, as the computational burden of applying the algorithm with
β = 3.0 is minimal, we choose for optimality.

We compared the proposed method with two other methods: region growing and
the discrete contour model. We determined the accuracy of each method by comparing
the automated segmentation with a manual segmentation using an area overlap criterion.
The mean overlap fraction for dynamic programming was 0.69, for region growing 0.59
and for the discrete contour model 0.60. The difference in overlap fraction between
the dynamic programming method and the other methods was statistically significant
(P � 0.05).

Besides analysing all segmentations quantitatively we also performed a case review
in which we judged the automated segmentations and decided whether the automated
segmentation was visually in agreement with the manual segmentation. In this case re-
view we found that in general segmentations with an overlap fraction of at least 0.70 are
appropriate. For dynamic programming 52% had an overlap fraction larger than 0.70, for
region growing 39% and for the discrete contour model 38%. These results demonstrate
that the segmentations obtained with dynamic programming more closely match visually
acceptable segmentations than the other two automated segmentation methods. All three
methods rarely achieved more than 90% overlap. One reason for this is that the accuracy
of the manual segmentation is limited. Often the manual segmentations are somewhat
large to make sure the whole tumour is inside the annotation. Another reason is that
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when the radiologists’ annotation and the automatically segmented area are not identical
the chosen overlap criterion quickly decreases. In this case review we also found that in
cases where the overlap fraction is less than 0.50, the segmentation method often failed
to find the right contour. Figures 3.1 and 3.2 show examples where the two existing
methods fail to find the right contour and where the resulting overlap fraction is low. In
Figure 3.1 the contrast of the mass is low and the resulting segmentation is too large. In
Figure 3.2 the contour is attracted towards the strong edge of the pectoral muscle. In both
cases the dynamic programming method correctly segments the mass. The advantage of
the dynamic programming method is that both global and local cost are combined with
different weights to determine the optimal contour.

In this study we only had one radiologist to do the manual segmentations. When
another radiologist would have done the segmentations, both the ground truth and the
centre of mass would have changed. We however believe that this would not have in-
fluenced the results for the following reasons. First, from the literature we know that
region growing and the discrete dynamic contour model are not very sensitive to small
changes in the seed point (Kupinski & Giger 1998; Lobregt & Viergever 1995). To de-
termine whether the dynamic programming method depends on the initial seed point, we
applied the method with two different types of seed points: the centre of the manually
segmented mass (µx, µy) and the most suspicious site in a neighbourhood of (µx, µy).
The results for both seed points were comparable. This indicates that small changes in
the seed point do not influence the segmentation performance. Second, we took several
measures to minimise uncertainty of the ground truth due to intra-observer variation. The
radiologist used a dedicated mammographic review station to outline the contour of each
lesion. We gave the radiologists clear instructions how to outline certain mass types. For
example, for architectural distortions and spiculated masses, only the central tumour had
to be annotated, and not the individual spicules. The main reason for this is that the out-
lining of spicules is very subjective. By taking these measures we expect that both intra-
and inter-observer variability will remain small. Finally we believe that segmentation
differences caused by inter-observer variability will be rather small compared to differ-
ences between the segmentation methods. Differences between radiologists are often of
a subtle nature, and mainly concern slight variations in outlining tumours with vague
boundaries and architectural distortions. Differences between the segmentation methods
may be quite large, for instance when one of the methods fails to find the right contour.
From Figure 3.8 we see that there is indeed a considerable number of cases where the
overlap fraction is less then 0.50, which corresponds with an incorrect segmentation.
Most of these cases would also have had a low overlap fraction when another radiologist
had done the segmentations.

The detection experiment showed that the improvement in segmentation performance
did not result in a better detection of malignant masses. This may be understandable as
we did not yet focus on the design of special contour features for mass detection. Instead
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we used contour features that we initially developed for the characterisation of mass le-
sions such as the sharpness of the boundary. For mass detection the CAD programme
should discriminate between malignant masses and patches of normal tissue. These of-
ten have similar border characteristics. Future research may aim at developing contour
features that capture relevant aspects of the mass boundaries to discriminate between ma-
lignant masses and false positive detections. With better contour features we expect that
the mass detection performance might benefit from a more accurate segmentation.

In the classification experiment we found that the proposed dynamic programming
method improved the classification accuracy to discriminate between benign and ma-
lignant masses. The Az value for case based performance was 0.74 for the proposed
segmentation method, 0.67 for the region growing method and 0.72 for the discrete con-
tour model. The difference in Az value between the proposed method and the region
growing method was statistically significant. Differences between other methods were
not statistically significant. The classification results were in agreement with the ranking
of the segmentation results. The best segmentation method—the dynamic programming
algorithm—also performed best in classification. Region growing—the method with the
lowest segmentation performance—also showed the lowest classification performance.
These results contradict the study from Sahiner et al. (2001). They compared a mass seg-
mentation method based on an active contour model with the manual segmentations from
two expert radiologists. Even when the radiologist and the computer had high disagree-
ment they observed no difference in classification accuracy. Our experiments however
indicate that a more accurate segmentation may result in an improved characterisation of
mass lesion.



Chapter 4

Temporal Changes in Masses 1

In this chapter we study temporal changes in mammographic masses. For this purpose we
use a set of malignant cases from the Dutch Breast Cancer Screening Programme. Each
case consists of the current mammogram and the mammograms from the previous two
screening rounds. We first calculate several features for each mass lesion on the current
view. When the mass is visible on the prior view, we also determine features for this
mass lesion. When the mass is not visible in retrospect, we determine the location on the
prior view where the mass most likely developed and calculate features at this location.
We then determine the change in feature values extracted from the prior and the current
region. The goal of this study is twofold. First to get insight into the temporal behaviour
of masses and second to study variations in this temporal behaviour. We can use this
information to estimate the benefit of using previous mammograms for radiologists and
computer aided diagnosis and detection (CAD) systems. When the analysis of temporal
changes provides useful information we can incorporate this into a CAD programme
to improve the detection or characterisation of masses. Chapter 6 and 7 concern the
development of such a CAD system.

4.1 Dataset

For the experiment we use a total of 250 biopsy proven breast cancer cases from the
Dutch Breast Cancer Screening Programme. These cases are either screen detected or
interval carcinoma. Table 4.1 summarises the histological class of all cases. Most cancers
are invasive carcinoma (90%). For our study we exclude cases with in situ cancers,
cases that consist solely of micro-calcifications (28 cases), and seven additional cases for
different reasons, for instance an incomplete mammogram. We use the remaining 215

1The content of this chapter has been published previously in Timp et al. (2002a)
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cases to study temporal changes.

Histology No. (Percentage)

ductal carcinoma in situ 17 (7%))

invasive ductal carcinoma 179 (72%)

lobular carcinoma in situ 0

invasive lobular carcinoma 27 (11%)

papillary carcinoma in situ 3 (1%)

papillary carcinoma infiltrative 2 (1%)

medullary carcinoma 2 (1%)

mucinous/colloid carcinoma 4 (2%)

tubular carcinoma 6 (2%)

invasive carcinoma NOS 8 (3%)

unknown 2 (1%)

Table 4.1: Histology for the 215 breast cancer cases that we used in our experiment.

For each case we collected the mammograms at three different points in time: the
diagnostic mammogram and the mammograms from the previous two screening rounds.
Figure 1.3 shows an example of a case consisting of three consecutive mammographic
exams. The diagnostic exam is either a clinical mammogram for interval cancers or a
screening mammogram for screen detected cancers. In every screening round medio
lateral oblique (MLO) views are made. The following guidelines exist when to make
additional cranio caudal (CC) views. When attending the screening programme for the
first time CC views are always taken. In subsequent screening rounds the radiographer
decides whether additional views are useful. The images from two consecutive screening
rounds form a temporal image pair. All images were digitised at a pixel resolution of
50 µm.

An expert radiologist identified the mass lesion on each view. The radiologist also
determined whether the tumour was visible on previous mammograms. When the mass
was visible on prior views, the radiologist rated its visibility as clearly visible or minimal
sign. The indication minimal sign means that only very subtle tumour characteristics
were present that probably would have been overlooked when the diagnostic mammo-
gram was not available. When the tumour was not visible we estimated the location on
the prior view where the mass most likely developed. This makes it possible to deter-
mine temporal changes for lesions that are visible and for lesions that are not visible on
the prior view.

Table 4.2 summarises the percentage of mass lesions that was visible on the prior
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view. From this table we see that in 54% of the cases the mass was visible in retrospect
on the prior I mammogram, that is the most recent prior mammogram (see Figure 1.3),
31% was rated as clearly visible and 24% as minimal sign. In 25% of the cases the
tumour was visible on both prior I and prior II mammograms. All mass lesions that were
visible on the prior II mammograms were rated as minimal sign.

Total Clearly Visible Minimal Sign

visible on prior I 117 (54%) 66 (31%) 51 (24%)

visible on prior II 53 (25%) - 53 (25%)

Table 4.2: Percentage of cases that were visible on previous mammograms. In 54% of
the cases the lesion was already visible on the prior I screening mammogram, in 25% of
the cases the lesion was visible on both prior I and prior II screening mammograms.

For each image we determined the corresponding mammographic exam (diagnostic,
prior I or prior II, see Figure 1.3) and whether the image contained a visible mass lesion.
Based on these characteristics we divided each image into one of the subsets of Table 4.3.
The diagnostic set contains 360 images. The priors of these images are classified as
prior I masses (138 images) or prior I normals (94 images), depending on whether the
mass lesion was visible or not. The remainder of the diagnostic images (128 images)
did not have prior views. From this table we can deduce that about 59%( 138

94+138 ) of
the diagnostic masses was already visible on the previous screening mammogram. This
percentage slightly differs from Table 4.2 because Table 4.2 calculates the visibility for
each case and Table 4.3 for each single image.

4.2 Temporal Change Analysis.

We study temporal changes for the whole dataset and for the above mentioned subsets of
the whole dataset. For this purpose we first segment corresponding regions on prior and
current views. Then we determine features for each segmented region. The difference
in feature values extracted from the prior and current region gives us information about
temporal changes. Below we describe both steps.

4.2.1 Segmentation

For all images with a visible mass lesion we calculate the centre of the annotated lesion
(µx, µy). Our dynamic programming based segmentation algorithm uses these coordi-
nates as starting point to determine a contour for the current region. Chapter 3 describes
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Image Subset Description Image Subset No.

experiment set all images used for the experiment 784

mass dataset images with mass lesion 576

-diagnostic masses diagnostic images with a visible mass lesion 360

-prior I visible masses prior I images with a visible mass lesion 138

-prior II visible masses prior II images with a visible mass lesion 78

normal dataset images without a visible mass lesion 208

-prior I normals prior I images without a mass lesion 94

-prior II normals prior II images without a mass lesion 114

Table 4.3: Description of different image subsets. The first column gives the image
name, the second column the description of the subset. The last column gives the number
of images in each subset.

this segmentation algorithm in detail. Then we determine a contour for the correspond-
ing prior region. When the lesion is visible on the prior view we use the centre of mass
of the radiologists annotation of the prior lesion as starting point for the segmentation
algorithm. Otherwise, when the lesion is not visible in retrospect, we estimate the loca-
tion on the prior view where the mass most likely developed. The dynamic programming
algorithm uses this location as starting point to determine a contour for the prior region.
The segmented region on the prior view and the segmented region on the current view
form a temporal region pair.

4.2.2 Feature Calculation

After segmentation we apply the single view CAD programme (see Chapter 2) to calcu-
late the following six features for all prior and current regions:

• f1 & f2: indicate the presence of a stellate pattern.

• g1 & g2 : indicate the presence of a focal mass.

• C1: contrast difference between the segmented region and its surround.

• size: area of the segmented region (in cm2). We calculate this feature only for
visible masses.

For each temporal region pair we then determine the relative change in feature values
between two consecutive mammographic exams:

f ′ = (fc − fp)/fp,
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where f ′ is the difference feature, fc the feature value of the current region and fp the
feature value of the prior region. Difference features might be useful to measure temporal
changes between two consecutive mammographic exams. We investigate whether these
temporal changes depend on 1) the exam of the current mammogram—that is diagnostic
or prior I—and 2) the visibility of the lesion on the prior view. For this purpose we
construct different sets of temporal region pairs. The first set—temporal set I—consists
of temporal region pairs with a visible lesion on both prior and current views. This set is
divided into temporal set Ia and set Ib. Set Ia contains temporal region pairs in which the
current mammogram is a diagnostic mammogram, in set Ib the current mammogram is a
prior I mammogram. Temporal set II contains temporal region pairs with a visible mass
on the current view that is not visible on the prior view. In set IIa the current mammogram
is a diagnostic mammogram, in set IIb a prior I mammogram.

4.3 Results

4.3.1 Average Feature Values

Table 4.4 summarises the average feature values for the different image subsets. From

Subset No. f1 f2 g1 g2 C1 size

total 784 1.161 1.046 1.282 1.241 0.950 0.653

mass dataset 576 1.182 1.058 1.331 1.284 1.107 0.574

diagnostic masses 360 1.189 1.064 1.348 1.304 1.316 0.788

prior I visible masses 138 1.182 1.051 1.352 1.290 0.996 0.367

prior II visible masses 78 1.169 1.051 1.274 1.238 0.801 0.352

normal dataset 208 1.091 1.010 1.127 1.104 0.329

prior I normals 94 1.093 1.008 1.146 1.133 0.419

prior II normals 114 1.089 1.011 1.107 1.075 0.238

Table 4.4: Mean feature values for the different subsets.

this table we see that features extracted from different mammographic exams often have
similar values. Features extracted from normal regions differ considerable from features
values extracted from mass regions.
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Set Description ∆f1 ∆f2 ∆g1 ∆g2 ∆C1 ∆size

I mass that is visible on prior 2.8 1.4 2.6 2.9 19.3 140.7

Ia diag mass & prior I visible 2.8 1.3 1.7 2.6 13.4 151.3

Ib prior I mass & prior II visible 2.9 1.8 4.6 3.9 32.8 116.3

II mass with normal prior 5.6 3.3 12.5 12.1 80.4

IIa diag mass & prior I normal 7.4 4.1 17.7 15.2 108.2

IIb prior I mass & prior II normal 8.7 6.1 17.5 17.2 94.9

Table 4.5: We construct different temporal image sets based on whether the mass lesion
is visible in retrospect and on the screening round from which the current mammogram
is taken. For each set we calculate the difference in feature values between segmented
regions on prior and current views.

4.3.2 Difference Features

Table 4.5 summarises the average value of difference features for each set of temporal
region pairs. This table is useful to study temporal changes between consecutive mam-
mographic exams and to evaluate whether these changes depend on the kind of exam of
the current mammogram (diagnostic or prior I) or on the visibility of the lesion on the
prior view. We see that temporal changes are more prominent when the mass lesion is
not visible on the prior view. Otherwise, when the lesion is already visible on the prior
view, changes are rather small. Furthermore, concerning the kind of exam of the cur-
rent mammogram, we conclude that almost all features increase more when the current
mammogram is a prior I mammogram than when the current mammogram is a diagnostic
mammogram. The size of a lesion however increased most between the prior I and the
diagnostic exam.

4.4 Discussion

In this chapter we studied the behaviour of masses during time. We found that on average
features change between two consecutive mammographic exams. Changes were largest
when the lesion was not yet visible on the prior view. For these lesions we obtained an
artificial region on the prior view at the location where the mass most likely developed.
We then calculated several single view features for this artificial region. This region will
not display tumour characteristics because the tumour is not yet visible resulting in low
values of the respective features f1, f2, g1, g2 and contrast. Consequently the difference
between the feature value of a lesion on the current view and an artificial region on the
prior view will be large.
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For lesions that were visible on all three consecutive screening mammograms, we
found the largest change in feature values from the prior II screening round to the prior I
screening round. The change from the prior I screening round to the diagnostic screening
round was rather small.

We studied changes in the size of a lesion in more detail. Figure 4.1 shows the distri-
bution of the feature difference in size. From this figure we see that most masses increase
in size during time. A considerable part (about 25%) of all masses however decreased in
size or remained unchanged. Further inspection of these masses showed that the largest
part (27%) concerned architectural distortions that change into more focal mass lesions
with smaller size and more contrast. Other reasons for a decrease in size were inaccurate
segmentations (25%), masses with a similar appearance on two consecutive mammo-
graphic exams (20%), masses that really decreased in (projected) size (15%), masses
located on the border of the mammogram (8%), and other (8%). Histograms of other
difference features also show large variations.
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Figure 4.1: Histogram of the feature difference in size. The x-axis indicates the rel-
ative difference in size between the current and the prior screening round. The y-axis
represents the number of masses.

From this study we conclude that temporal features might improve the performance
of a CAD system. From Figure 4.1 we learn that difference features may show large vari-
ations, making it difficult to draw strong conclusions from temporal change information.
Radiologists and CAD systems can use this knowledge when discriminating between
normal tissue, malignant lesions, and benign lesions.





Chapter 5

Regional Registration to find
Corresponding Masses in
Temporal Images 1

In the previous chapter we found that malignant masses on average change between
two consecutive mammographic exams. Using information about temporal changes may
therefore be useful to improve the detection and characterisation of mass lesions. Before
we can compare prior and current regions we should link each current region to a cor-
responding region on the prior view. In this chapter we develop a regional registration
technique to accomplish this. Starting from a current image containing a mass lesion,
this registration technique aims at locating the same mass lesion on the prior image.

5.1 Introduction

Studies report a positive effect on either recall rate or an improvement in mass detection
performance when using multiple views in mammography screening compared to single-
view mammography, cf. (Wald et al. 1995; Sickles et al. 1986; Thurfjell et al. 2000;
Callaway et al. 1997). Given the positive effect of multi view systems on radiologists’
performance we expect that fusion of information from different views might improve
CAD systems as well. A first step towards a multi view approach is the development of
programmes to link corresponding lesions.

Few studies have been done to find corresponding regions in different mammographic
views. These studies aim at finding similar structures in either different projections of the

1The content of this chapter has been published previously in Timp et al. (2005).
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same breast (Good et al. 1999; Paquerault et al. 2002) or mammograms obtained at dif-
ferent points in time (Sanjay-Gopal et al. 1999; Hadjiiski et al. 2001a; Filev et al. 2005;
Timp & Karssemeijer 2006). The first three studies on temporal registration (Sanjay-
Gopal et al. 1999; Hadjiiski et al. 2001a; Filev et al. 2005) first localise the mass on the
current mammogram in a polar coordinate system with the nipple as the origin. Based
on these coordinates they estimate the location of the mass on the prior mammogram.
This predicted location of the mass centroid on the prior mammogram determines a fan-
shaped search region. A similarity measure then determines the best matching location
inside this fan-shaped search region. Hadjiiski et al. (2001a) investigated the useful-
ness of correlation and mutual information as registration measures. In a recent study
Filev et al. (2005) compared twelve different similarity measures for the task of template
matching. That study shows that the best performing similarity measures for matching
corresponding regions in temporal mammogram pairs are Pearson’s correlation, the co-
sine coefficient, and Goodman and Kruskal’s Gamma coefficient. In a previous study
we developed a regional registration method in which the search for correspondence is
done in a feature space (Timp & Karssemeijer 2006). We constructed this feature space
by estimating at each location inside a circular search area the likelihood that a mass is
present, called the mass likelihood. Then we selected the location with the highest mass
likelihood inside this search area as match for the lesion on the current view.

Both registration methods have some disadvantages. A problem with methods based
on template matching is that these only work when both regions are more or less similar
in appearance. This might be true for some—especially benign—lesions that stay more
or less constant in time, but is obviously not true for malignant lesions that change con-
siderably in time. Registration methods that work in a feature space and use the mass
likelihood or a comparable registration measure will work well in cases with relatively
few potential lesion candidates. These methods may fail when the prior region does not
display enough mass characteristics—resulting in a low mass likelihood—or when the
search area contains more than one region with a high mass likelihood. In this chapter
we therefore develop a new registration technique that combines the above mentioned
methods.

Method Our combined regional registration method comprises three steps. In the first
we align both images. Then, in the second step, we define for each mass lesion on the
current view a search area on the prior view in which the mass lesion is most likely
located. In the third step we combine three registration measures to determine the best
location inside the search area. Finally we select this location as estimate for the centre
of the prior mass lesion.

More specifically, in the third step we apply the following three registration measures.
The first measure represents the likelihood that a mass is present, i.e. the mass likelihood.
As second measure we use Pearson’s correlation coefficient to measure the similarity be-
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tween the mass on the current view and a candidate region for the corresponding mass on
the prior view. We evaluate the effect of different template shapes on the performance of
this correlation measure. The last measure is a distance criterion that gives preference to
locations near an initial estimate. Pertaining to the running time we provide a fast variant
of the combined registration method in which the measures are applied sequentially.

We compare the performance of the combined method with techniques that use only
one registration measure. For this purpose we use a dataset consisting of 389 temporal
mammogram pairs that contain a mass lesion that is visible on the prior and the cur-
rent view. Finally we investigate possible shortcomings of each method by comparing
the registration performance for different sets of lesions including benign and malignant
masses, and masses that are subtle or obvious on the prior view.

Structure The chapter has the following structure. In Section 5.2 we explain the reg-
istration methods in more detail. Section 5.3 describes the experiments to evaluate the
different registration methods. In Section 5.4 we present the results with a discussion in
the last section.

5.2 Registration Procedure

In this section we present the general procedure we follow to register temporal mass pairs.
First, in Section 5.2.1, we describe pre-processing and global registration. Section 5.2.2
describes the definition of a search area. Then, in Section 5.2.3, we explain each of the
applied registration measures.

5.2.1 Pre-processing and global registration

Before we can globally register prior and current views we have to pre-process both im-
ages. To this end, we first segment each image into breast region, background tissue and
pectoral muscle, using a breast boundary and pectoral muscle segmentation algorithm de-
veloped previously in our group. We subsequently apply an algorithm that removes addi-
tional attenuation from the pectoral muscle. This pectoral equalisation method makes the
border region more homogeneous, which is advantageous when dealing with masses that
develop on the pectoral boundary. Finally we apply a peripheral enhancement algorithm
to the breast area to correct for differences in tissue thickness. Section 2.1 describes these
algorithms.

Following pre-processing we use a simple procedure based on a centre of mass align-
ment to globally register both images. For this alignment we first determine the mathe-
matical centre of mass of the prior and the current image. We can determine the centre of
mass using the whole breast area including the pectoral muscle or using the breast area
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with the pectoral muscle excluded. In our experiments we exclude the pectoral muscle
as this improves the registration accuracy (see Table 5.2 and (Van Engeland et al. 2003)).
Then we horizontally and vertically shift the prior image such that its centre of mass co-
incides with the centre of mass of the current image. Figure 5.1 illustrates this alignment
after a vertical shift of ty and a horizontal shift of tx. After alignment of both images we
use the centre coordinates of the lesion on the current image (µx, µy) as initial estimate
of the location of the lesion on the prior image.
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Figure 5.1: Global alignment and definition of the search area. First both images are
aligned by shifting the prior image with tx and ty. The centre coordinates of the lesion
on the current image (µx, µy) then form the initial estimate for the lesion on the prior
image. This initial estimate is the centre of a circular search area (white circle) with
radius r. We calculate the registration measures at each location inside this search area.

5.2.2 Definition of the search area

After the images have been aligned we define for each mass lesion on the current image
a search area on the prior image. In the literature two different shapes of a search area
have been proposed. Timp & Karssemeijer (2006) used a circular search area and Sanjay-
Gopal et al. (1999) a fan-shaped search area. As prerequisite we consider it important that
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the definition of a search area can be done completely automatic. A fan-shaped search
area, as proposed in (Sanjay-Gopal et al. 1999), requires the location of the nipple. This
is a disadvantage as it is sometimes difficult to identify the nipple, in particular if modern
high contrast film screen combinations are used. Furthermore, we assume that the shape
of the search area will have little influence on the final registration performance when the
search area is large enough. Therefore we decide to use a circular search. As centre for
this search area we use the initial estimate of the location of the mass lesion on the prior
view (µx, µy).

To ensure that the search area includes most masses we use a large radius of 30 mm.
The size of the search area is based on a comparative study Van Engeland et al. (2003)
performed. They compared several registration methods and found that the maximum
error—i.e. the maximum distance between the estimated mass location and the real mass
location—was 30 mm for a centre of mass alignment. Figure 5.1 shows the final search
area on the prior view with centre (µx, µy) and a radius of 30 mm. After defining the
search area we calculate at each location inside this area the regional registration mea-
sures.

5.2.3 Registration Methods

In this section we first describe the individual registration measures mass likelihood and
correlation. Then we explain our proposed registration methods that combine different
registration measures.

Registration based on Mass Likelihood

These methods determine at each location inside the circular search area on the prior
view the likelihood that a mass is present, that is a mass likelihood measure. A high mass
likelihood on the prior view may indicate the presence of a lesion. Registration meth-
ods based on mass likelihood assume that the location with the highest mass likelihood
corresponds with the lesion on the current view. As mass likelihood measure we use the
outcome of our pixel level mass detection algorithm. Section 2.2 describes this algorithm
in detail. Shortly the algorithm works as follows. At each location inside the breast area
two features for the detection of stellate lesions and two features for the detection of focal
mass lesions are calculated. These features are used as input for a 3-layer feed-forward
neural network trained on known abnormalities. Next we construct the likelihood image
by assigning each pixel inside the breast area the corresponding classifier output. Then
we slightly smooth this image. The middle row images in Figure 6.2 and 6.3 show ex-
amples of likelihood images. We define the mass likelihood as the smoothed classifier
output at each location in the breast area. For each current mass lesion we select the lo-
cation inside the search area with the highest mass likelihood as estimate for the location
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of the mass lesion on the prior view.

Registration based on Grey Scale Correlation

Registration methods based on correlation select a region on the prior view that is similar
to the lesion on the current view and assume that this region represents the same mass
lesion. Below we explain this method and describe different templates that we tested for
the correlation method.

Method Registration methods based on grey scale correlation calculate the pixel corre-
lation between a template image of the current mass—the current mass template—and a
candidate region on the prior image. We first select one of the templates described below
and put this template over the current mass lesion to obtain the current mass template.
Then we obtain candidate regions for the prior mass by putting the template at each loca-
tion inside the search area on the prior image. Finally we calculate Pearson’s correlation
measure between the current mass template and the candidate region centred at (i, j) on
the prior image:

C(i, j) =

∑

(m,n)(yc(m,n) − yc)(yp(m
′, n′) − yp)

√

∑

(m,n)(yc(m,n) − yc)
2
∑

(m,n)(yp(m′, n′) − yp)
2

(5.1)

The grey level at location (m,n) in the current mass template is given by yc(m,n) and
the grey level of the candidate region with centre (i, j) at the same relative location by
yp(m

′, n′). The summation is performed over all locations (m,n) inside the current mass
template. The average grey level in the mass template and the candidate region is given
by yc and yp respectively. We select the location with the highest correlation as estimate
for the location of the mass on the prior. The next paragraph describes different mass
templates.

Mass Templates We designed different templates for the registration method based
on correlation: an inner mass template, an outer mass template, and three extended
templates. These templates cover different parts of the underlying mass lesion and its
surrounding tissue. Figure 5.2 illustrates the templates for a benign mass. Before con-
structing a template we first use the dynamic programming based segmentation algorithm
from Chapter 3 to determine the contour of the current mass lesion.

The inner mass template, as illustrated in Figure 5.2(b), consists of all pixels inside
the contour and exactly represents the underlying mass lesion. A candidate region on
the prior image highly correlates with this mass template when the mass lesion is similar
in appearance on prior and current views. On the other hand, when the mass changes
considerably between two consecutive mammographic exams, for example in size or
contrast, the correlation between both regions will be low.
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Figure 5.2(c) illustrates the outer mass template. This template consists of all pixels
outside the mass lesion that have a distance of less than 6 mm from the border. Conse-
quently the correlation only depends on the similarity between the outer border region
of the current mass and a similar region on the prior view. This can be an advantage for
masses that change significantly in appearance. For these masses the outer border region
will stay more or less similar in appearance between both views. On the other hand,
this template can cause problems when the grey level characteristics of the outer border
region are not unique. An example is a tumour completely embedded in fatty tissue. The
outer mass template will represent grey level characteristics of fatty tissue and thus show
little variation. Consequently, the correlation between this template and a candidate re-
gion on the prior image will be high when the candidate region is homogeneous as well.
In uniform breasts this may result in many candidate regions all correlating equally well
with the current mass template.

Figure 5.2(d), 5.2(e) and 5.2(f) show the extended templates. These templates consist
of a part of the inside region—the inner part—and an outer border region. The first
extended template, see Figure 5.2(d), is a simple extended template that consist of the
whole inside region and an outer border region. The second one—the growing mass
template—only contains the central part of the inside region and an outer border region.
We designed this template for masses that grow between two mammographic exams.
We assume that for these masses the most inner part and the outside border region are
more or less similar on the prior and the current view. As inner part we use the most
central region with a size of 1

2 A where A is the area of the whole inside region. We base
the size of the inner part on the observation that most masses in our database at most
double in (projected) size between two consecutive screening rounds. The last extended
template is the circular template. For this template we first determine the effective radius
R =

√

(A/π) of the inside region. The circular template then simply is a circular region
with radius R + b where b is the size of the outer border region. For all three extended
templates the size of the outer border b region is 3 mm.

Combined Registration Methods The last registration method combines the mass
likelihood with a correlation measure and a distance criterion. We develop two variants
of this combined method. In both methods we first determine the individual registration
measures at selected locations inside the search area. After calculating the individual
measures at each location we normalise each measure v using the minimum and maxi-
mum values found in the dataset:

ṽ =
v − min(v)

max(v) − min(v))
(5.2)

and then linearly combine them:

R(i, j) = wcC(i, j) + wll(i, j) − wdd(i, j), (5.3)
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(a) Benign mass lesion (b) Inner mass template

(c) Outer mass template (d) Simple extended template

(e) Growing mass template (f) Circular mass template

Figure 5.2: Figure 5.2(a) shows the segmentation of a benign mass. The other figures
show the different mass templates.
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where R(i, j) is the combined registration measure, C(i, j) the grey scale correlation
measure for the best performing template shape, l(i, j) the mass likelihood and d(i, j)

the distance to the initial estimate. We use the whole dataset to determine the weights wc,
wl and wd to achieve maximum registration performance. To find the optimal weights
we vary the coefficients wc and wl between zero and 100 and keep wd fixed at 51.

The difference between both combination methods concerns the selection of the lo-
cations where the measures are calculated. The first variant simply calculates the three
registration measures at each location inside the search area. As we calculate all measures
simultaneously we call this method the simultaneous combination method. To reduce the
computational effort we developed a second variant in which we calculate the registration
measures sequentially. This method first selects all locations inside the search area with a
mass likelihood above a certain threshold. If two selected locations are less then one mil-
limetre apart we remove the one with the lowest mass likelihood. This procedure results
in an average of 100 selected locations for each search area. We then determine the other
two registration measures—correlation and distance to initial estimate—for the selected
locations. We call this method the sequential combination method as we calculate the
registration measures sequentially.

We compare both variants with respect to registration performance and computa-
tional efficiency. An important difference between both methods is that the sequential
method only processes locations that show mass characteristics. This can have negative
and positive consequences for the registration performance. A negative consequence is
that a correct location will be missed when its mass likelihood is below the threshold,
independent of the value of the correlation measure. This may result in a decrease of
the registration performance for (benign) lesions with few mass characteristics. A posi-
tive consequence is that the sequential method will skip locations with accidentally high
correlation when they display not enough mass characteristics. This may increase the
probability that a correct match occurs. Considering the computational efficiency we no-
tice that this mainly depends on the number of locations where the correlation measure
is calculated. For the sequential method this corresponds with on average 100 locations
for each search area. The simultaneous method calculates the correlation measure at
each location inside the search area. This amounts with almost 71,000 locations for a
search area with radius 30 mm and a pixel resolution of 200 µm. The computational
effort is thus reduced about a thousandfold by using the sequential method compared to
the simultaneous method. For the sequential registration method, the whole procedure,
including the calculation of the mass likelihood, takes less than one minute per image.
As we determined the mass likelihood already in our single view CAD programme—see
Chapter 2—the extra time needed for the registration is based solely on the calculation
of the correlation measure. This takes a few seconds per image in the sequential reg-
istration method. This means that the method can be implemented into a CAD system
without much additional time costs.
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5.3 Experiments to Evaluate Regional Registration

In this section we first describe the dataset and the subsets that we used for the experi-
ments. Then we describe the evaluation measure we used to quantify the performance of
each registration method.

5.3.1 Dataset

The mammograms used in this study all came from the Dutch Breast Cancer Screening
Programme. We constructed the dataset for the experiments by collecting all temporal
image pairs with a visible mass lesion on the prior and the current view. Each temporal
image pair consisted of the mammograms from two consecutive mammographic exams.
We call the most recent image in a temporal pair the current mammogram and the image
obtained in the previous screening round the prior or previous mammogram. The images
came from two different sets. Table 5.1 summarises information about each set. The first
dataset consisted of 155 image pairs with a malignant mass on prior and current views.
This dataset contained 281 images from 87 patients. The images were digitised with a
Lumisys 85 digitiser at a pixel resolution of 50 µm.

The second dataset consisted of 234 image pairs, 94 with a malignant mass and 140
with a benign mass. This dataset contained 434 images from 155 patients. The images
were digitised with a Canon CFS300 laser scanner at a pixel resolution of 50 µm. A
radiologist rated all masses in this dataset for their visibility on a scale from 1 to 5. A
rating of 1 corresponds to masses that are clearly visible. A rating of 5 corresponds with
subtle masses that are difficult to see. Most of these can only be detected in retrospect.

Combination of the two sets resulted in 389 temporal image pairs, 140 benign and 249
malignant. The number of temporal pairs is larger than half of the number of the images
since for some women the mammograms of three consecutive mammographic exams
were available. For the experiments we used a spatial resolution of 200 µm maintaining
the original grey value resolution of 12 bits.

We annotated all mass lesions on prior and current views under supervision of an
expert radiologist. For this purpose we used specially designed software on a dedicated
mammographic review station. We determined the size of each annotated mass lesion on
both the prior and the current view. Figure 5.3 shows the distribution of the mass size
for benign and malignant masses. The mean size of benign masses was 2.2 cm2 on the
current mammogram versus 1.8 cm2 on the prior mammogram. The average growth of
the benign masses, defined as the ratio between the current and the prior mass size, was
1.4. The mean size of malignant masses was 2.4 cm2 on the current mammogram versus
1.7 cm2 on the prior mammogram. The average growth of malignant masses was 1.66.
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Dataset I Dataset II

no. of image pairs 155 234

no. of images 281 434

no. of patients 87 155

malignant image pairs 155 94

benign image pairs 0 140

MLO views 124 194

CC views 31 40

Table 5.1: Composition of the datasets used for the experiments.
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Figure 5.3: Size of masses on prior and current views.
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5.3.2 Subsets

We tested the performance of each registration method on the whole dataset and on sev-
eral subdivisions of the original dataset. These subdivisions contain different mass types
and the performance on these subsets informs us about specific shortcomings of each
method. The first subdivision is between benign and malignant masses. We use this
subdivision to test our assumption that correlation measures are more suited for benign
masses and measures based on mass likelihood for malignant masses. We base this as-
sumption on the fact that correlation measures work best for lesions that stay more or
less constant in time, which is often the case for benign masses. Malignant masses on
the other hand can change considerably in time, not only in size, but also in contrast and
overall appearance. We use the set of malignant masses that have been rated for their
visibility to make a subdivision between masses that are clearly visible on the prior view
and masses that are very subtle on the prior view. To this end we put all masses with
a visibility rating of 5 in the group of subtle priors and all other masses in the group
of obvious priors. We expect that most masses in the group of subtle priors will have a
different appearance on the prior and the current view. These masses may thus be less
suited for methods based on correlation.

5.3.3 Validation

As evaluation measure for the registration methods we use the fraction of correctly
matched lesions. We count a match as correct when the selected location is inside the
annotation of the radiologist. Besides evaluating the performance of each registration
method we also determine the optimal search radius by varying the radius of the search
area between 0 and 30 mm.

5.4 Results

In the first two paragraphs we present the results for the global and regional registration
methods. For this purpose we used the complete dataset of 389 temporal image pairs.
In the third paragraph we give the performance each registration method for different
subsets of the original dataset. In the last paragraph we describe cases where the proposed
registration method failed to establish a correct link.

5.4.1 Global Registration Performance

We tested the accuracy of global alignment for two implementations. In the first we
used the whole breast—including the pectoral muscle—to determine the centre of mass
of the breast area. In the second we excluded the pectoral muscle when determining
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the centre of mass of the breast. After alignment we used the centre coordinates of the
current mass lesion as estimate for the location of the mass lesion on the prior view. We
then determined the fraction of correctly linked masses. We counted a link as correct
when the initial estimate fell inside the manual segmentation of the lesion on the prior
view. Furthermore we determined for each lesion the distance between the centre of the
current mass lesion—i.e. the initial estimate—and the centre of the prior mass lesion.
Table 5.2 presents the results. From Table 5.2 we see that the global registration method
improves when we exclude the pectoral muscle for determining the centre of mass. In
the other experiments we therefore use the implementation in which the pectoral muscle
is excluded.

Fraction Mean Distance to
Correct Ground Truth (mm)

with pectoral muscle 0.30 11.9

without pectoral muscle 0.37 9.9

Table 5.2: Results for the global registration procedure where we determined the centre
of mass of the breast area with and without the pectoral muscle. The first column gives
the fraction of correctly linked masses. The second column gives the mean distance from
the centre of the current mass lesion to the centre of the prior mass lesion.

5.4.2 Performance Registration Measures

Table 5.3 and Figure 5.4 show the results for the different registration measures. The
best performance for the measure based on mass likelihood is 0.71 for a search radius
of 12 mm. Considering the correlation measure we find that the inner and outer mass
templates have a significantly lower performance than the extended mass templates. The
best performing extended mass template is the growing mass template, although the dif-
ference with the other extended templates is not statistically significant. We furthermore
studied the influence of the outer border region by varying the size of this region in the
simple extended template between 0 and 6 mm. From Table 5.4 we see that the fraction
of correctly linked masses is 0.60 for the simple extended template without an outer bor-
der region, that this fraction increases up until 0.68 for an outer border region of 1.4 mm
and then stays more or less constant.

We select the growing mass template for the grey scale correlation measure in the
combined registration methods. The difference between the performance of the com-
bined registration methods and the individual registration measures is statistically signif-
icant. Figure 5.4 shows that the performance of both combined methods increases up
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Registration Measure Fraction Correct Radius Distance

mass likelihood 0.71 ± 0.02 12 3.6

inner mass template 0.60 ± 0.02 16 4.2

outer mass template 0.48 ± 0.03 8 4.6

simple extended mass template 0.69 ± 0.02 20 3.6

growing mass template 0.71 ± 0.02 20 3.5

circular mass template 0.69 ±0.02 16 3.7

simultaneous combination 0.82 ±0.02 20 2.6

sequential combination 0.82 ± 0.02 20 2.8

Table 5.3: Registration results for the different methods. The first column shows the
registration measure. The second column gives the fraction correctly linked masses and
the standard deviation. The third column shows the radius of the search area where the
maximum performance has been obtained and the last column the mean distance to the
ground truth.
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Figure 5.4: Overview of regional registration measures. For each method the fraction of
correctly linked lesions is plotted against the radius of the search area.
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Outer Border Size (mm) 0 0.6 1.0 1.4 2.0 3.0 4.0 6.0

Fraction Correct 0.60 0.63 0.66 0.68 0.68 0.69 0.69 0.69

Table 5.4: Fraction correctly linked masses where we varied the outer border size of the
simple extended template.

until 0.82 for a search radius of 20 mm and then stays more or less constant. The weights
for wc, wl, and wd were 33, 29 and 51 for the simultaneous combination method and 51,
75, 51 for the sequential combination method. From these coefficients we see that the
distance measure is more important for the simultaneous method than for the sequential
method. For the sequential method the mass likelihood measure has a lower weight than
the correlation measure. This was expected as all processed locations in the sequential
method already have a relatively high mass likelihood. The choice for a location then
mainly depends on the grey scale correlation measure. For both methods we find that
small variations in the coefficients have little influence on the results. For example, when
the coefficients wc, wl and wd are equal, the performance of both methods is 0.80.

Figure 5.5 shows a scatter plot for the measure based on mass likelihood versus grey
scale correlation for correctly linked masses and masses that were linked incorrect. The
correlation between both measures is 0.34 for correctly linked masses and 0.22 for in-
correct matches. From the figure we see that most correctly linked masses have a high
correlation measure and a high mass likelihood. However, there is also a large number of
masses with either a low correlation or a low mass likelihood. This explains the increased
performance of the combination methods compared to the performance of the individual
measures.

Figure 5.6 shows the histogram of the distance between the selected location and the
centre of the ground truth. The mean distance for correctly linked masses is 1.2 mm. For
incorrect matches the mean distance is 10.0 mm. This is more or less equal to the mean
distance measured after the global registration step. There are a few outliers among the
incorrect links. In these cases the global registration failed and the true mass lesion was
located outside the search area.

5.4.3 Registration Performance for Subsets

Table 5.5 gives the fraction of correctly linked masses for different subsets. This table
shows that the mass likelihood performs best on malignant masses and the grey scale
correlation measure on benign masses. The combination methods perform satisfactory
on both subsets. Table 5.5 also shows that the individual registration measures perform
similarly for masses that are subtle and masses that are obvious on the prior view. Fur-
thermore we find that the sequential combination method performs better than the simul-
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Figure 5.5: Scatter plot for correct and incorrect links.
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Figure 5.6: Histogram for the distance from the selected location to the ground truth for
correct and incorrect links.

taneous combination method on the group of masses that are subtle on the prior view.

5.4.4 Link Errors

One of the best performing methods—the simultaneous combination method—links 18%
of all lesions incorrect. To obtain insight into the possible causes of these link errors
we compare each of the three registration measures—correlation, mass likelihood, and
distance—at the selected location with the same measures at the correct location. When
one measure performs substantially better at the selected location, we choose failure of
this measure as the most important cause of the incorrect match. Table 5.6 shows that a
combination of a low correlation and a low mass likelihood is the most common cause
of an incorrect match. In most of these cases the mass on the prior mammogram is very
subtle, which has consequences for both the correlation measure and the mass likelihood.
The second most important cause of link errors is a large distance to the initial estimate.
In these cases the global registration method did not work very well. We find a low mass
likelihood as cause for the link errors for benign masses that are subtle on the prior view.
Finally, we see that masses with a low correlation often change considerably between two
consecutive mammographic exams. Figure 5.7 gives some examples where the combined
registration method failed. The letter C indicates the correct location, S the selected
location. Figure 5.7(a) shows a very subtle mass on the prior view, in Figure 5.7(b) the
selected location shows a spiculation pattern resulting in a higher mass likelihood than
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Subset
No. of Mass Gray scale Sim Seq
Lesions Likelihood Correlation Comb Comb

original dataset 389 0.71 0.71 0.82 0.82

benign masses 140 0.66 0.74 0.82 0.79

malignant masses 249 0.75 0.69 0.82 0.84

subtle on prior view 37 0.76 0.68 0.78 0.84

obvious on prior view 57 0.74 0.67 0.84 0.84

Note.—Sim = simultaneous, Seq = sequential, Comb = combination.

Table 5.5: Registration performance for different subsets. The second column gives the
number of temporal image pairs in each subset. The other columns give the registration
performance for each measure.

Reason of Incorrect Link Percentage

combination of low correlation and low mass likelihood 38%

far from initial estimate 25%

low mass likelihood 21%

low correlation 17%

Table 5.6: Summary of the most important causes of incorrect links.
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the correct location.

5.5 Discussion

In this chapter we presented an automatic regional registration method that finds cor-
responding mass lesions in temporal mammogram pairs. This method combines three
registration measures: a measure based on correlation, a mass likelihood measure, and a
distance criterion. On the complete set of masses this combined method linked 82% of
the masses correctly, compared with 71% for both individual measures.

For the measure based on correlation we designed different template shapes and in-
vestigated the influence of the template shape on the registration performance. For all
shapes we used Pearson’s correlation coefficient as similarity measure. In a recent study
Filev et al. (2005) found that this measure works best among a selection of twelve dif-
ferent similarity measures. Results for the different template shapes show that the best
performing template is the growing mass template. We designed this template for masses
that either grow or stay constant in time. The registration performance of the other two
extended mass templates, the simple extended template and the circular template, was
only slightly lower. This shows that the correlation measure is not very sensitive for
small changes in template shape. The low performance obtained with the inner and outer
mass templates shows that both regions are necessary to obtain good registration results.
We furthermore found that the minimal size of the outer border region is 1.4 mm and
that the registration performance is similar for larger outer border regions. This obser-
vation differs from the study from Sanjay-Gopal et al. (1999). They found a decrease in
registration performance when the size of the outer border region increased. The main
difference between both studies is that Sanjay-Gopal et al. (1999) used a bounding box
as template whereas our template depends on the contour of the mass. As most masses
are more or less circularly shaped a bounding box will always contain surrounding tis-
sue along some—but not all—parts of the contour. This might influence the registration
results.

To obtain information about the performance of each method on specific mass types
we divided the original dataset into several subsets. The first subdivision of the original
dataset was between benign and malignant masses. This subdivision shows that a corre-
lation measure is more suited for benign masses. This may be explained by the fact that
benign masses stay more or less constant over time resulting in a good correlation be-
tween both views. From the results we conclude that a measure based on mass likelihood
is more suited for malignant masses. This measure will select a correct location on the
prior view even when the mass has changed considerably, provided that the mass lesion
on the prior is at the location with the highest mass likelihood. Furthermore, this measure
also takes spiculation into account, which is a frequent sign of malignant masses.
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Figure 5.7: Examples of link errors. The white circle indicates the search area. C is the
correct location, S the selected location.
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The second subdivision was between masses that are very subtle and masses that are
obvious on the prior view. Concerning the combined registration methods we found that
the sequential method was more suited to find subtle priors than the simultaneous method.
This is in agreement with the observation that the correlation between a subtle masses
on the prior view and its corresponding mass on the current view is often quite low.
Consequently, making a pre-selection of locations with a high mass likelihood increases
the probability that the correct mass location is selected, on condition that this location
has enough mass characteristics to be selected. When all locations are processed—like in
the simultaneous combination method—some incorrect locations accidentally may have
a high correlation, increasing the probability that an incorrect match occurs.

In summary we found that methods that combine several registration measures per-
form better than methods that use only one registration measure. The choice between
both combination methods depends 1) on the number of regions initially detected by a
CAD programme and 2) on whether the CAD programme aims at detecting all kinds of
masses or only malignant ones. When the number of initial regions is quite large, what
is common for CAD programmes, the sequential combination method is preferred be-
cause it is very fast compared to the simultaneous method. The sequential method also
performs better on the subset of malignant masses. On the other hand, we might choose
the simultaneous method when the CAD programme mainly aims at detecting benign
lesions.

A computer aided detection (CAD) system that includes temporal information can
use this regional registration method to link selected regions on the current mammogram
to corresponding locations on the prior mammogram. Combination of features from
linked regions gives information about temporal changes. In the next chapters we will
build such a CAD system and evaluate the effect of temporal features on the detection
and characterisation performance.





Chapter 6

Interval Change Analysis for the
Detection of Masses 1

In this chapter we include temporal information in our CAD programme to improve the
detection of malignant masses. For this purpose we first use a simplified version of the
registration method described in Chapter 5. Following the linking process we calculate
several features for the current and prior region. We then obtain temporal features by
combining the feature values from both regions. Finally we evaluate the effect of tempo-
ral features on the detection performance of our CAD programme.

6.1 Introduction

At the moment most CAD (computer aided diagnosis) programmes in mammography
use a single view to detect abnormalities. However, when mammograms from multiple
examinations are available, and CAD makes use of correlations between exams, a higher
accuracy may be achieved in detecting malignancies. In this study we concentrate on
using information from previous and current views. In Chapter 1 we already mentioned
some advantages of using previous mammograms. Despite these advantages the devel-
opment of CAD systems that include temporal information has not yet received much
attention.

We can divide previous work into two main categories: (1) methods that compare
current images with priors to detect subtle changes in the breast and (2) methods that
compare suspicious regions in current mammograms with corresponding regions in pri-
ors. Vujovic et al. (1995) used the first method to detect abnormalities. They first divided

1This chapter is based on Timp & Karssemeijer (2004b) and Timp & Karssemeijer (2006)
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the current and prior mammogram into several regions using internal control points. Then
they used these control points to define circular regions inside each mammogram. Next
they compared corresponding regions from prior and current views using texture and
contrast measures. They found that the intensity histogram carried useful information in
separating normal from abnormal tissue. Kok-Wiles et al. (1998) and Timp & Karsse-
meijer (2004b) used the second method. Kok-Wiles et al. (1998) represented the breast
as a nested structure of salient regions and used this representation to compare prior and
current regions. In a previous study (Timp & Karssemeijer 2004b) we compared the con-
trast and size of corresponding regions on prior and current mammograms and found that
the detection performance improved by adding this information to the CAD system

Both methods depend more or less on the accuracy of the temporal registration. Tem-
poral registration includes global registration and regional registration. Global techniques
register current and prior mammograms. In the literature some approaches have been
described for global mammogram registration, cf. (Sallam & Bowyer 1994; Vujovic &
Brzakovic 1997; Richard & Graffigne 2000). A comparative study for global registration
methods in mammography has been done by Van Engeland et al. (2003). They compared
four methods for mammogram registration: alignment based on nipple position, align-
ment based on the centre of mass of the breast tissue, warping, and registration based on
mutual information. They measured the performance of all methods by comparing the
distance between the centre of the manual segmentation of abnormalities on the previous
and the current view before and after registration and found that the method based on
mutual information worked best. The method based on centre of mass alignment worked
reasonably well, in particular if the pectoral muscle was excluded for centre of mass cal-
culation. The method based on nipple alignment only worked if the nipple was visible
in profile. The method based on warping performed worst and could cause unrealistic
deformations inside the breast area.

In this study we develop a temporal CAD method and investigate the effect of tem-
poral features on the detection performance. Figure 6.1 summarises the different steps.
The method starts with the mammograms of two consecutive mammographic exams:
the prior and the current mammogram. On both mammograms the breast area and the
pectoral muscle are segmented. A global registration method based on centre of mass
alignment registers the current and the prior images. Next a pixel level mass detection
algorithm assigns each pixel inside the breast area a measure of suspiciousness, the so-
called mass likelihood. This measure represents the likelihood that a malignant mass
is present at that location. We then select the most suspicious locations on the current
image and link these to a corresponding location on the prior view. After linking we
calculate features for prior and current regions. The combination of features from both
regions results in the so-called temporal features. We use FROC analysis to evaluate the
detection performance with and without the use of temporal features.

The remainder of this chapter is organised as follows. In Section 6.2 we first briefly
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discuss the single view CAD programme and then explain the proposed temporal CAD
programme in more detail. Section 6.3 describes the experiments to evaluate the regional
registration technique and the temporal CAD programme. In Section 6.4 we present the
results of our experiments. Section 6.5 includes some discussion and comparison with a
conclusion in the last section.

6.2 Single View and Temporal CAD programme

The CAD programme consists of the following three components: initial CAD pro-
gramme, single view part, and temporal part. Figure 6.1 gives the outline of the com-
plete method. Subsection 6.2.1 describes the initial CAD programme that includes some
pre-processing steps and a pixel level mass detection algorithm. This algorithm detects
tumour characteristics and assigns each location in the breast area a score that indicates
how likely it is that a lesion is present. Subsection 6.2.2 describes the single view part that
includes segmentation of the current image at suspicious locations and feature extraction.
Subsection 6.2.3 explains the three steps of the temporal CAD program: global registra-
tion, regional registration and feature combination. In the last subsection we describe
feature selection and classification for both single view and temporal CAD methods.

6.2.1 Initial CAD programme

Below we shortly review the initial CAD programme, for details see Chapter 2. We apply
the initial CAD programme to all prior and current images. We start with pre-processing
all images: segmentation of the image into breast tissue, background tissue and pectoral
muscle (Karssemeijer 1998), peripheral enhancement to correct for differences in tissue
thickness, and removal of the sharp transition in grey level from the breast area to the
pectoral region (Timp & Karssemeijer 2006). We then apply a pixel level mass detection
algorithm that estimates the potential presence of a tumour at each location inside the
breast area. For this purpose we calculate at each location two features for the detection
of a spiculation pattern or architectural distortion and two features for the detection of a
focal mass. A neural network classifier combines these features into a single score that
represent the likelihood that a mass is present at that location. Therefore we call this
classifier output score the mass likelihood.

6.2.2 Single view CAD method

The single view CAD programme selects locations with a high mass likelihood for further
processing. First a segmentation algorithm segments the current image at the selected
locations. For segmentation we use an algorithm based on dynamic programming, see
Chapter 3. We then calculate features for each segmented region resulting in a total of 39
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Group Name No. Temp Description

Dense Tissue 5 Features that determine the location of a

region with respect to the dense tissue

Spiculation 4 * Features that detect spiculated lesions

Focal Mass 4 * Features that detect a focal mass

Mass Likelihood 3 * Mass likelihood measures

Intensity 1 * Mean grey value inside the contour

Contrast 5 * Difference between the grey level histograms

of a region and its surround

Variance 4 * Variance in grey level histogram of a region

and its surround

Linear Texture 6 * Presence of linear texture

Iso-denseness 1 * Iso-denseness of the segmented region

Location 3 Features that determine the location of a region

relative to the pectoral muscle and the skin

Size 1 * Size of the segmented region

Circularity 1 * Circularity of the segmented region

Wolfe 1 Estimated Wolfe class

Table 6.1: Feature description. We divide the basic features into twelve different groups.
The first column gives the group name, the second column the number of features in each
group, and the last column a description of the group. A star indicates that we calculate
these features both for prior and for current regions to obtain temporal information.

features. Chapter 2 describes these features in detail. We call these single view features
the basic feature set and divide each feature into one of 12 different categories according
to the type of characteristic it represents. Table 6.1 lists the different feature groups.

6.2.3 Temporal CAD method

In the temporal CAD part we first globally register previous and current views. Then we
apply a regional registration technique to link each suspicious site on the current view
to a corresponding site on the prior view. After completion of the linking procedure the
prior image is segmented at the selected location and features are calculated for the seg-
mented region on the prior view. Combining features from both views provides temporal
information. Figure 6.2 and 6.3 show temporal image pairs and the corresponding likeli-
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hood images. Figure 6.2 shows a newly developed mass, whereas the mass on Figure 6.3
was already visible on the previous mammogram. The three most suspicious sites are
indicated with their corresponding numbers.

Global Registration

To register current and the prior views we use a simple procedure based on centre of
mass alignment. A problem with centre of mass alignment is the varying proportion
of the pectoral muscle that is visible. Van Engeland et al. (2003) found that the regis-
tration improved considerably by excluding the pectoral muscle in the centre of mass
calculation. Therefore we first segment the pectoral muscle using the Hough transform,
see (Karssemeijer 1998). Then we calculate the centre of the breast area for both prior
and current views with the pectoral muscle excluded. Next we register both views using
vertical and horizontal translations.

Regional Registration

The next step in the temporal CAD programme is regional registration to find for each
suspicious site on the current view a corresponding site on the prior view. In the previ-
ous chapter we described a registration method that combines three different measures.
In this chapter we use a simplified version of this method that only uses two different
registration measures: the mass likelihood and a distance criterion. To this end we first
define a search area on the prior view in which the mass is likely to be located. As both
mammograms are globally aligned we can use the coordinates of the centre of the current
lesion (µx, µy) as initial estimate for the location of the lesion on the prior mammogram.
This initial estimate defines the centre of a circular search area with radius r as illus-
trated in Figure 6.4. We calculate both registration measures at each location inside this
search area. The combined registration measure is proportional to the mass likelihood
and inversely proportional to the distance from the pixel to the initial estimate:

R(i, j) = l(i, j) − wdd(i, j), (6.1)

where l(i, j) is the value of the mass likelihood at location (i, j) and d(i, j) the distance to
the initial estimate (µx, µy). The factor wd is a weight factor that determines the relative
importance of the distance criterion. We select the location with the highest registration
measure as match for the location on the current view. In Subsection 6.4.1 we evaluate
the performance of this regional registration technique for different values of r and wd.

Segmentation and Feature Extraction

The last step in the temporal CAD programme concerns segmentation of the prior image
at the selected locations and extraction of features from these segmented regions. For
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Figure 6.2: The upper row shows the prior (left) and current image of a newly developing
mass. The middle row shows the likelihood images for both prior and current mammo-
grams. The most suspicious locations on the current likelihood image are selected. A
regional registration technique then links each selected site to a corresponding location
on the prior image.
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Figure 6.3: The upper row shows the prior and the current image of a growing mass.
The middle row shows the likelihood images for both prior and current mammograms.
The most suspicious locations on the current likelihood image are selected. A regional
registration techniques then links each selected site to a corresponding location on the
prior image.
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r


Figure 6.4: After global registration each suspicious site C = (µx, µy) on the current
view defines a circular search area on the prior view with centre P = (µx, µy) and
radius r. The best matching site inside this area is linked to location C.

each region pair we obtain temporal features by subtracting the prior feature value from
the current feature value. We determine temporal features for all single view features
except for the location features, the dense tissue features, and the estimated Wolfe class.
This results in a total of 30 temporal features. We call the set containing both single view
and temporal features the temporal feature set. Table 6.1 summarises these features.

6.2.4 Classification

Before classification we normalise each feature to zero mean and unit variance:

f ′ =
f − f

σ(f)
,

where we used the whole dataset to determine the mean f and standard deviation σ(f)

of each feature f . The classifier design consists of the following two stages: feature
selection and classifier training. Both parts are done completely independent from the
evaluation of the classifier. We use a cross-validation scheme to randomly partition the
dataset into a training set and a test set on a 10:1 ratio under the constraint that images
from the same patient are grouped into the same subset.

In the first stage we use the training set to select the best subset of features. As
feature selector we use sequential forward floating selection (SFFS) (Pudil et al. 1994).
In the second stage we use the training set to train a simple 3-layer feed-forward neural
network classifier. After training the neural network assigns all regions in the test set a
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score that indicates whether the region is malignant or not, called the malignancy score.
By making both feature selection and classifier design independent of the test set, we
aim at improving the generalisability of our classification results to unknown cases in the
patient population.

6.3 Mass Detection Experiments

6.3.1 Dataset

The dataset for this study consisted of 4871 single view images obtained from 938
women. All images used in this study came from the Dutch Breast Cancer Screening
Programme. From these 4871 single view images we constructed 2873 temporal image
pairs. The number of temporal pairs was larger than half of the number of the images
since for some women the mammograms from three consecutive exams were available:
the diagnostic mammogram, the most recent prior mammogram (prior I) and the second
most recent prior mammogram (prior II), see Figure 1.3. The images were digitised with
either a Canon CFS300 or a Lumisys 85 scanner at a pixel resolution of 50 µm, and were
averaged to a resolution of 200 µm maintaining the original grey value resolution of 12
bits.

In 589 image pairs the current view contained exactly one malignant mass. We call
this the malignant dataset. In 44% the mass was also visible on the prior view. This
resulted in 262 temporal images pairs with a visible mass on both current and prior
views, and 327 image pairs with a newly developing abnormality on the current view.
No pathology was present in 2284 images. We call these images normal. We manually
outlined all malignant masses under supervision of an expert radiologist on a dedicated
mammographic review station.

For the experiments we made two subdivisions of the malignant dataset. The first
subdivision was between masses that were visible on the prior view and masses that were
not visible on the prior view, that is between visible priors and normal priors. We made
this subdivision to study whether temporal features are as useful for new lesions as for
existing lesions. The second subdivision was between image pairs in which the current
mammogram was a diagnostic mammogram and pairs in which the current mammogram
was a prior I screening round mammogram. Table 6.2 summarises the different sets.

6.3.2 FROC Analysis

We use Free Response Operating Characteristic (FROC) methodology to evaluate the
detection accuracy of the total dataset and the different subsets for both the basic feature
set and the temporal feature set. We consider a tumour as detected when the initial
detection location is inside the ground truth. If multiple detections are found inside the
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Subset
No. of

Diag Prior I
Image Pairs

malignant dataset 589 407 182

subset with visible priors 262 195 67

subset with normal priors 327 212 115

Table 6.2: Description of different subsets: malignant dataset, subset with visible priors
and subset with normal priors.

same ground truth region they are considered as a single hit. We count detections outside
the ground truth areas as false positive signals. We only perform image based analysis
as the number of temporal cranio caudal image pairs is too low to perform a case based
analysis.

Furthermore we calculate for each partition, obtained by ten fold cross-validation of
the original dataset, the area under the FROC curve. We are mainly interested in the
detection performance obtained for a low number of false positives per image as this
corresponds with normal screening situations. Therefore we use a logarithmic scale for
the number of false positives per image and calculate the area under the FROC curve
from 0.05 FP/image to 1.0 FP/image. We use the two-sided paired Wilcoxon test with
0.95 confidence level to asses the difference in performance between the basic feature set
and the temporal feature set.

6.4 Results

In this section we describe the results of the experiments. First we give the performance
of the regional registration method. Then we describe the features chosen by the feature
selector. Finally we give the detection performance for the total dataset and the different
subsets.

6.4.1 Regional Registration

We evaluated the regional registration performance on a set of malignant lesions with
known ground truth. In this set all lesions were visible on current and prior mammo-
grams. As evaluation measure we used the percentage of correctly linked locations. We
considered a match as correct when the location selected by the regional registration
method was inside the ground truth area.

Figure 6.5 shows the performance of the regional registration performance. The y-
axis plots the fraction of correctly matched regions. The x-axis indicates the radius r of
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the circular search area. The size of this radius depends on the accuracy of the global
registration method. A small search area would suffice for an almost perfect global reg-
istration. However, as registration is a difficult task in mammography, a large search
area in combination with a proper regional registration technique might be preferred. We
compared our combined registration method with the correlation measure from Sanjay-
Gopal et al. (1999). This correlation measure indicates the similarity between regions on
prior and current views. Our proposed combined registration uses both the mass likeli-
hood and a distance criterion to select the best match. The highest number of correctly
matched regions for the proposed method was 72% for wd = 2.0 and r = 20 mm. The
method based on correlation linked 69% correct for r = 16 mm.
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Figure 6.5: Regional registration results for different values of wd compared to the reg-
istration method based on template matching. On the horizontal axis the radius of the
search area is plotted. The vertical axis shows the fraction of tumours that were correctly
linked by each of the regional registration methods.

6.4.2 Feature Selection

During the first stage of the classification procedure the best features were selected based
on the training set. The feature set was either the basic feature set or the temporal feature
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Group Name No. from basic set No. from temporal set

Mass Likelihood 20 20

Location 18 20

Dense Tissue 17 12

Contrast 16 7

Spiculation 12 10

Focal Mass 10 6

Circularity 8 7

Size 9 1

Iso-denseness 7 2

Linear Texture 3 9

Variance 0 2

Contrast Difference - 10

Size Difference - 9

Mass Likelihood Difference - 3

Spiculation Difference - 2

Table 6.3: Results of the feature selection process. The first and the second column list
the number of features that have been selected from the basic feature and the temporal
feature set respectively.

set. For both sets the feature selection procedure resulted in a subset of features from
the total feature set. By ten fold cross-validation we obtained ten different subsets of
features. Table 6.3 lists the number of selected features for the basic feature set and the
temporal feature set.

From Table 6.3 we see that the most frequently selected temporal features are differ-
ence in contrast, difference in size, and difference in mass likelihood. At the same time
corresponding features from the basic feature set were selected less frequently. So the
temporal features were selected instead of their corresponding basic features. For exam-
ple the basic feature selector almost always selects the feature size, while the temporal
feature selector instead chose the feature difference in size. An explanation might be that
difference features contain both information about the current region as well as temporal
information. Table 6.4 lists some information about the selected temporal features. We
calculated the mean and the standard deviation for both the current feature and for the
corresponding difference feature. We furthermore studied the difference between false
positive regions and true mass lesions. The table shows that difference features for the
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Feature
False Positives True Positives

AzBasic Temporal Basic Temporal
mean sd mean sd mean sd mean sd

Size 0.26 0.10 -0.02 0.16 0.54 0.28 0.21 0.34 0.67

Likelihood 1.58 0.11 0.04 0.27 2.04 0.11 0.33 0.25 0.66

Contrast 0.35 0.03 0.01 0.04 0.60 0.09 0.21 0.10 0.75

Table 6.4: Mean and standard deviation (sd) of selected temporal features for false pos-
itives and true positives. The most frequently selected temporal features were difference
in size, difference in contrast and difference in mass likelihood. The last column shows
the Az value for the selected temporal features.

false positive regions have small values indicating that on average the features stay more
or less constant during time. For the true positives we find that most feature values change
during time. On average true positives are larger, have a higher mass likelihood, and have
more contrast compared to lesions one screening round earlier. We evaluated the indi-
vidual performance of each selected temporal feature by calculating the area under the
individual ROC curve. For this purpose we first applied our initial detection algorithm
to select the most suspicious region in each image. This resulted in 200 false positive
regions and 389 true positive regions. We used these regions to construct an ROC curve.
The last column in Table 6.4 gives the area under the ROC curve (Az value) for each
selected temporal feature.

6.4.3 FROC analysis

Figure 6.6 shows the mass detection performance for the basic feature set and the tem-
poral feature set. The figure shows that temporal features improve the detection per-
formance, especially at a low number of FP detections per image. Table 6.5 gives the
results of the Wilcoxon statistic for the total dataset and the two subsets. The difference
in performance between both feature sets is statistically significant.

We furthermore calculated FROC curves for the different subsets. Figure 6.7 shows
the results for masses with visible and normal priors. We see that masses that are visible
on the prior profit more from temporal features than masses with normal priors.

Figure 6.8 shows the results for mammogram pairs in which the current mammogram
is the diagnostic mammogram and pairs in which the current mammogram is a prior I
mammogram. The detection performance for diagnostic mammograms is better than for
prior I mammograms. Both subsets show an improvement when temporal features are
used. These improvements however are not statistically significant.
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Figure 6.6: Image based FROC detection results for the basic feature set and the tempo-
ral feature set.

Total Visible Normal
Diag Prior I

Dataset Priors Priors

Basic 0.706 0.762 0.656 0.785 0.45

Temp 0.721 0.785 0.669 0.797 0.46

P-value 0.05 0.05 0.13 0.19 0.38

CI (0.00,0.03)† (0.02,0.08)† (-0.01,0.06) (-0.01,0.03) (-0.01,0.04)

Note:—† Statistically significant. CI = Confidence Interval

Table 6.5: Results of the Wilcoxon’s test for the statistical difference in area under the
FROC curve for different datasets. The first two rows gives the mean area under the
FROC curve for the basic and the temporal feature set. The third row gives the p-value
for Wilcoxon’s statistic. The last row gives the 95% confidence interval.
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Figure 6.7: Image based FROC detection results for the subsets in which the mass was
visible cq. not visible on the prior mammogram.
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Figure 6.8: FROC detection results for the subsets in which the current mammogram is
the diagnostic mammogram and the prior I mammogram respectively.
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6.5 Discussion

In this study we investigated the additional value of temporal features for our detec-
tion scheme. For this purpose we used a simplified version of the registration method
described in Chapter 5. This registration method combines the mass likelihood and a dis-
tance criterion to determine for each region on the current view the best matching location
on the prior view. This technique correctly linked 72% of all mass lesion. This method
is fast as we already calculated the mass likelihood in the single view CAD programme.
Furthermore the method is completely automatic.

We used feature selection to find the best features in the basic and the temporal feature
set. The feature selection method most frequently selected the following three temporal
features: contrast difference, size difference, and difference in mass likelihood. The
mass likelihood is a feature from the first detection step and indicates the likelihood
that a focal mass lesion or a spiculation pattern is present. In Chapter 4 we examined
mammographic changes in masses regarding to size and contrast. In that study we also
found that the features contrast and size both increased in time. These features can thus
be used as tumour markers.

Figure 6.6 gives the detection performance of the total dataset with and without the
use of temporal features. The detection performance significantly improved when using
temporal features. In the current study we calculated temporal features for all regions,
regardless of whether they were visible on the prior or not. Figure 6.7 shows the results
for existing and new lesions. We see that masses that are visible on the prior profit more
from the use of temporal features than masses than new masses, although these also
show a small—not significant—improvement when temporal features are used. This
indicates that temporal features have a different effect on both groups. Therefore it might
be better first to classify all regions on the current as new or existing and then decide
which features to calculate for each group. Some features can be useful for both new and
existing lesions. An example is contrast. If a tumour is not visible on the prior we can
define an artificial region at the location selected by the regional registration programme
and calculate contrast measures inside this region. Then we can compare the contrast of
this region with the contrast of the region on the current. For the feature size we can not
use the size of the artificial region, as nothing is visible. Instead we can for instance set
the size to zero when nothing is visible on the prior view. From the above mentioned
examples we conclude that it might be useful to take into account whether a region is
new or already existed. Calculating different features for both groups may lead to a
better detection performance.

In summary, we performed a study in which we obtained temporal difference features
by subtracting the prior feature value from the current feature value for corresponding
regions on both views. We observed an improvement in detection performance when
using these temporal difference features. In the next chapter we focus on developing



6.5 DISCUSSION 111

specific temporal measures that determine whether prior and current regions are similar
in appearance. When both regions are similar, it is likely that the region represents a
false positive detection or a slowly growing benign mass. On the other hand, if a region
has changed considerably, this is more suspect for a malignant lesion. These features
therefore might be useful to discriminate between benign and malignant lesions.





Chapter 7

Interval Change Analysis for the
Characterisation of Masses 1

In this chapter we investigate the use of temporal features to improve the characterisation
of masses. For this purpose we first apply the regional registration technique described in
Chapter 5 that finds for each mass lesion on the current view a location on the prior view
where the mass most likely developed. For the task of interval change analysis we use
two kinds of temporal features: difference features and similarity features. Difference
features indicate the (relative) change in feature values determined on prior and current
views. These features may be especially useful for lesions that are visible on both views.
Similarity features measure whether two regions are comparable in appearance and may
be useful for lesions that are visible on the prior view as well as for newly developing
lesions. We evaluate the effect of these features on the performance of a CAD system
that discriminates between benign and malignant lesions.

7.1 Introduction

An important task of radiologists in mammography is to discriminate between benign
and malignant lesions. In clinical practice a radiologist carefully analyses all detected
lesions and classifies each lesion as benign, probably benign, suspicious, or highly sug-
gestive of malignancy. The BI-RADS reporting system provides criteria on which radi-
ologists should make this classification (D’Orsi & Kopans 1997; Orel et al. 1999). The
subsequent management of lesions mainly depends on this classification. For proba-
bly benign findings short-interval follow-up is suggested. For suspicious abnormalities

1This chapter is based on Timp et al. (2006b)
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biopsy should be considered. A good decision increases the number of correctly detected
malignancies and reduces unnecessary additional examinations.

Mass lesions have some characteristics that can be used to discriminate between be-
nign and malignant lesions (Friedrich & Sickles 2000; Homer 1997). An important char-
acteristic is the margin type of a lesion. Most benign masses possess well-defined sharp
borders, while malignant tumours often have ill-defined, micro-lobulated, or spiculated
borders. Especially a spiculation pattern is strongly associated with the presence of a
malignant lesion. The differential diagnosis of a spiculated lesion is short and includes a
postoperative scar, a radial scar, fat necrosis, or any process resulting in marked fibrosis.
Another characteristic that may be helpful in discriminating between benign and malig-
nant lesions is the shape of a lesion. The shape of benign lesions is often round and oval,
compared to a more irregular shape of most malignant lesions. The last difference be-
tween benign and malignant lesions is the tumour behaviour over time. Benign masses
tend to change slowly and have a more or less similar appearance on two consecutive
screening mammograms. Malignant masses on the other hand may change considerably
and become more suspicious during time. This chapter focuses on the design of features
that capture temporal changes to improve the characterisation of mass lesions.

Some studies have been done to evaluate the effect of using temporal information
on either the detection (Bassett et al. 1994; Thurfjell et al. 2000; Callaway et al. 1997)
or characterisation (Varela et al. 2005; Hadjiiski et al. 2004) of mass lesions. The last
two studies are observer studies that evaluate the effect of prior views on the ability of
radiologists to discriminate between malignant and benign lesions. Varela et al. (2005)
did a study with six radiologists and found that the performance of each radiologist im-
proved when using prior mammograms. Hadjiiski et al. (Hadjiiski et al. 2004) did a
study with eight radiologist and two breast imaging fellows and also found a significant
improvement when the radiologists used prior views.

To our knowledge only one study compared the performance of a CAD system with
and without using prior views (Hadjiiski et al. 2001b). The dataset for that study con-
sisted of mammograms from two consecutive screening rounds with a visible mass lesion
on the current and prior view. A radiologist first identified the mass lesion on current and
prior mammograms after which a CAD programme calculated single view and temporal
features. On a dataset consisting of 140 temporal image pairs the Az value significantly
increased from 0.82 to 0.88 when temporal features were added to the CAD system.

In this chapter we develop a CAD programme for temporal change analysis to im-
prove the characterisation of breast masses. This programme combines single view and
temporal features to determine a likelihood of malignancy for each mass lesion. Our pro-
posed method has some advantages. First, our method is almost completely automatic.
It only requires manual identification of the mass on the current view, after which a re-
gional registration programme is applied to identify a location on the prior view that best
corresponds with the current mass lesion. Existing methods require manual identification
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of the mass on both prior and current views. Second, our method is not only suited for
masses that are visible on the prior view but also for masses that are new. This corre-
sponds with normal screening situations where only some lesions are visible on the prior
view. Third, besides using difference features we include temporal features that measure
changes in appearance between a mass region on the current view and a similar region on
the prior view. These features discriminate between benign lesions that stay more or less
constant and malignant lesions that change between two consecutive screening rounds.

Radiologists can use this programme as an aid to characterise mass lesions. When
a radiologist uses this method he should provide the coordinates of the lesion on the
current view. The programme then automatically finds a corresponding location on the
prior view and determines single view and temporal features to estimate the likelihood
that the lesion is malignant. Studies in the literature suggest that a radiologist can use
this likelihood of malignancy to improve interpretation of lesions (Hadjiiski et al. 2004;
Huo et al. 2002; Chan et al. 1999).

We evaluate the performance of our method on a dataset consisting of 238 benign
and 227 malignant temporal mammogram pairs. Furthermore we split the dataset into
two subsets. The first subset consists of masses that are visible on the prior view and the
second subset of masses that are not visible on the prior view. We study which features
are useful for each subset and determine the classification performance for each subset.

The remainder of this chapter is organised as follows. Section 7.2 explains the pro-
posed CAD method for characterisation of mass lesions. Section 7.3 describes the experi-
ments, including the dataset in Section 7.3.1, and the classification results in Section 7.3.2
and 7.3.3. The last section contains a discussion and conclusion.

7.2 Single View and Temporal CAD Programme

This section describes our CAD programme that processes mammograms from consec-
utive mammographic exams in which the most recent mammogram contains a visible
lesion. This lesion has been annotated by or under supervision of an expert radiologist.
Figure 7.1 shows an example of a case that consists of three consecutive mammograms.
In this example we see that priors are not always available for CC views. The CAD
programme consists of the following three components: initial CAD programme, sin-
gle view part and temporal part. Subsection 7.2.1 describes the initial CAD programme
that includes some pre-processing steps and a pixel level mass detection algorithm. This
algorithm detects tumour characteristics and assigns each location in the breast area a
score that indicates how likely it is that a lesion is present. Subsection 7.2.2 describes the
single view part that is applied to all current images. In brief a segmentation programme
determines a contour for each current lesion after which several features are calculated
to discriminate between benign and malignant lesions. A Support Vector Machine clas-
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sifier combines these features into a single malignancy score that indicates whether the
lesion is malignant or not. Subsection 7.2.3 describes the temporal CAD programme
that is applied to images for which prior views are available. This programme works as
follows. A regional registration method finds for each segmented lesion on the current
view a corresponding location on the prior view where the mass most likely developed.
We calculate two kinds of temporal features at this location to measure interval changes
between the current lesion and a corresponding region on the prior view. We add these
temporal features to the single view features to improve the characterisation performance.

PSfrag replacements

temporal
image pair

single view

first temporal
mammogram pair

Figure 7.1: Example of three consecutive mammograms of the same woman. Mam-
mograms are displayed in chronological order. The bottom row represents a referral
mammogram. A malignant lesion is present in the left MLO image of the referral and its
corresponding prior mammogram. The mammograms from two consecutive screening
rounds form a temporal mammogram pair. This case provides two temporal mammo-
gram pairs. The bottom and middle rows show the first mammogram pair, in which the
referral mammogram represents the current mammogram. This mammogram pair con-
sists of two temporal image pairs (left and right MLO current-prior) and two single views
(left and right CC). The top and middle rows form the second mammogram pair, in which
the mammogram prior to referral represents the current mammogram. This mammogram
pair contains two temporal image pairs (left and right MLO current-prior).
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7.2.1 Initial CAD programme

Below we shortly describe the initial CAD programme, for details see Chapter 2. The
initial CAD programme is applied to all prior and current images. We start with pre-
processing all images: segmentation of the image into breast tissue, background tissue,
and pectoral muscle (Karssemeijer 1998); peripheral enhancement to correct for differ-
ences in tissue thickness; and removal of the sharp transition in grey level from the breast
area to the pectoral region (Timp & Karssemeijer 2006). We then apply a pixel level
mass detection algorithm that estimates the potential presence of a tumour at each loca-
tion inside the breast area. For this purpose we calculate at each location two features
for the detection of a spiculation pattern or architectural distortion and two features for
the detection of a focal mass. A neural network classifier combines these features into a
single score that represent the likelihood that a mass is present at that location. Therefore
we call this classifier output score the mass likelihood.

7.2.2 Single View CAD

After pre-processing the single view CAD programme processes all current images. First
the mathematical centre of mass of the radiologists’ annotation is determined for each
mass lesion. A segmentation algorithm based on dynamic programming—for details see
Chapter 3—uses this location as starting point to determine a contour for each lesion.
For each segmented lesion several single view features are determined that are useful for
characterisation of mass lesions. A Support Vector Machine classifier combines these
features into a single score that represents the probability that the lesion is malignant.
Table 7.2 summarises the single view features that include spiculation measures, bor-
der features, location features, morphological features, and a feature that indicates the
presence of micro-calcifications. For a description of these features see Chapter 2.

7.2.3 Temporal CAD

The temporal CAD part consists of three steps. In the first step prior and current images
are globally registered using a centre of mass alignment (Van Engeland et al. 2003). Af-
ter alignment we use the centre coordinates of the current lesion (µx, µy) as midpoint
of a circular search area on the prior view with radius 2 cm. Inside this search area we
use a regional registration programme to select the location on the prior view where the
mass most likely developed. This registration method has been described in detail in
Chapter 5. Shortly the method works as follows. At each location (i, j) inside the search
area we calculate three registration measures: mass likelihood, distance and grey level
correlation. The mass likelihood indicates the potential presence of a mass at each loca-
tion. The distance measure indicates the distance from (i, j) to the centre of the search
area (µx, µy). The last measure is Pearson’s correlation between the current region and
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a similar region on the prior view centred at (i, j). A linear discriminant analysis (LDA)
classifier combines these measures—mass likelihood, distance and correlation—into a
single score: the registration score. We select the location with the highest registration
score (is, js) as match for the current mass lesion. Figure 7.2 shows some examples of
temporal image pairs and the location selected by the regional registration programme.

We then use the location (is, js) as starting point for our segmentation algorithm.
This algorithm determines a contour of the region on the prior view, independent of
whether the lesion is visible or not. We extracted single view features from the seg-
mented region on the prior view and calculate two kinds of features that measure tempo-
ral changes: difference features and similarity features.

Difference Features Difference features measure changes in feature values between
the prior and the current region. In our experiments we determine difference features for
all single view features except for the location features. For the feature “size” we use the
relative change between the feature value of the current region and the feature value of
the prior region. For the other features we use the absolute change as these features are
already normalised measures. Difference features may be especially helpful when the
tumour is already visible on the prior view. When the lesion is not yet visible on the prior
view the contour defined by our segmentation programme is not meaningful. Features
that depend on the contour such as the size of a region are not useful in that case.

Similarity Features The second group of temporal features measure the similarity be-
tween the current region and the selected region on the prior view.

• Regional Registration Score. The first similarity feature is the output from the re-
gional registration programme. This feature corresponds with the likelihood that a
correct link has been established. A low registration score therefore may indicate
that the lesion is not visible on the prior view. The classifier might use this infor-
mation to determine the relative usefulness of temporal difference features. The
registration score on its own may also help to characterise mass lesions. A high
registration score for example may indicate the presence of a benign mass when
the mass is obvious on the prior view—resulting in a high mass likelihood—and
similar on prior and current views—resulting in a high correlation measure. A low
registration score on the other hand may suggest the presence of a malignant le-
sion as malignant lesions often change more between two consecutive screening
rounds.

• Relative Grey Level Change. The second similarity feature calculates the relative
difference in grey level between the current and prior region. For this purpose we
transform the current image such that its grey level histogram matches that of the
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(a) On prior and current views a benign mass is present that
is similar in appearance on both views.

(b) On the current view a benign mass is present. On the
prior view a similar region is selected.

Figure 7.2: Pairs of temporal images. Left and right images correspond to prior and
current views. In each prior view the arrow indicates the location selected by the regional
registration programme. Fig. 7.2(a) shows a benign mass that is similar on the prior and
the current view. The benign mass in Fig. 7.2(b) is not yet visible on the prior view. The
registration programme selects the most probable location on the prior view.
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(c) On the current view a malignant mass is present. The
prior view shows no abnormality.

Figure 7.2: (cont.) Pairs of temporal images. Fig. 7.2(c) shows a malignant mass on
the current view. On the prior view no abnormality is discernible. The registration
programme selects the most probable location on the prior view.

prior image. We first calculate for the prior and the current image the cumulative
histograms of the grey values inside the breast area. For each grey level y the
cumulative histograms are

fC(y) =

y
∑

i=0

HC(i) fP (y) =

y
∑

i=0

HP (i),

where HC (HP ) is the histogram of the grey value inside the current (prior) breast
area. We then transform each grey level y of the current image

ỹ = f−1
P (fC(y)).

After histogram matching we determine the relative grey level change between a
similar region on the prior and the current view. We use the segmented region
on the current view as a template and put this template over the selected location
(is, js) on the prior image. The relative grey level change between both regions is

RGLC =
1

N

∑

(m,n)∈C

(ỹc(m,n) − yp(m
′, n′)),

where the summation is performed over all locations (m,n) inside the current
region C. N denotes the number of pixels inside C, ỹc(m,n) the transformed
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grey level at location (m,n) in C and yp(m
′, n′) the grey level at the same relative

location in the prior region with centre (is, js).

7.2.4 Case Based Classification

As classifier we use a Support Vector Machine (Cristianini & Shawe-Taylor 2000) where
we use the implementation provided in the freely available package from CRAN (Hornik
2005). We use the radial basis kernel for training and testing. For testing we use the
probability model for classification assuming equal priors. The probability model for
classification fits a logistic distribution using maximum likelihood to the classifier out-
puts. The probabilistic regression model assumes (zero-mean) Laplace-distributed errors
for the predictions, and estimates the scale parameter using maximum likelihood (Hornik
2005).

As not all images in our dataset have prior views (see Figure 7.1) we train two dif-
ferent classifiers: a single view classifier and a temporal classifier. For both classifiers
we apply a 20-fold cross-validation scheme to partition the dataset into a training set and
a test set. The single view classifier estimates for each image the posterior probability
p(m|xsv) that a lesion is malignant given the feature vector xsv with single view features
extracted from the current region . The case based malignancy score ζ(l) combines the
posterior probabilities from available MLO and CC views to estimate the likelihood that
a lesion is malignant. When both MLO and CC views are present we use the sum rule to
determine this case based malignancy score (Kittler et al. 1998):

ζ(l) =
1

2
(pmlo(m|xsv) + pcc(m|xsv)).

When only the MLO image is available the case based malignancy score is equal to the
posterior probability from the MLO view:

ζ(l) = pmlo(m|xsv).

To include temporal information we train a second (temporal) classifier that determines
the posterior probability p(m|xt) that a lesion is malignant given a temporal feature
vector xt containing single view, difference and/or similarity features. The case based
malignancy score ζ(l) indicates the likelihood that a lesion is malignant and depends
on the available views of the current and the prior mammogram. We distinguish the
following situations.

• The temporal mammogram pair only contains a temporal MLO image pair. For the
current mammogram no CC views are available. This situation corresponds with
the second mammogram pair in Figure 7.1. We use the posterior probability from
the MLO view as the case based malignancy score:

ζ(l) = pmlo(m|xt).
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• The temporal mammogram pair consists of a temporal MLO image pair and single
view CC images. Prior CC views are not available. For example see the first
mammogram pair in Figure 7.1. To determine the case based malignancy score we
use the sum rule to combine the posterior probabilities from the temporal MLO
classifier and the single view CC view classifier:

ζ(l) =
1

2
(pmlo(m|xt) + pcc(m|xsv)).

• The temporal mammogram pair consists of a temporal CC image pair and a tem-
poral MLO image pair. We use the sum rule to combine the posterior probabilities
for the MLO and CC view, both obtained with the temporal classifier:

ζ(l) =
1

2
(pmlo(m|xt) + pcc(m|xt)).

For the evaluation of the single view and the temporal CAD system we use Receiver
Operating Characteristic (ROC) methodology (Metz 1986; Metz et al. 1998b). We quan-
tify the classification accuracy as the area under the case based ROC curve (Az value). To
test whether temporal features improve the performance we perform a paired comparison
of both conditions—CAD with and without the use of temporal features—with regard to
differences in the area under the two estimated ROC curves. For this purpose we use the
freely available CLABROC software (Metz et al. 1998a).

7.3 Mass Characterisation Experiments & Results

7.3.1 Dataset

The mammograms used in this study all came from the Dutch Breast Cancer Screening
Programme. All women aged 50-75 are invited bi-annually to participate in this pro-
gramme. Two mammographic views—medio lateral oblique (MLO) and cranio caudal
(CC)—are obtained at the initial screening. At subsequent screenings only medio lateral
views are obtained, unless there is an indication that additional cranio caudal views would
be beneficial. All images were digitised with a Canon CFS300 laser scanner at a pixel
resolution of 50 µm and averaged to a resolution of 200 µm maintaining the original grey
value resolution of 12 bits. All visible masses were annotated by or under supervision of
an expert radiologist.

For the experiments we used consecutive mammograms from a collection of cases
that were referred between 1996 and 2000. These cases consist of mammograms at
referral and mammograms from up to two previous screening rounds. All images from
two consecutive screening rounds form a temporal mammogram pair. In a temporal
mammogram pair we call the most recent mammogram the current mammogram and
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Name Set
No of Cases
(Images)

Benign Cases
(Images)

Malignant
Cases (Images)

total dataset 465 (720) 238 (356) 227 (364)

temporal dataset 465 (542) 238 (279) 227 (263)

single view dataset 178 (178) 77 (77) 101 (101)

subset with visible priors 202 (246) 108 (133) 94 (113)

subset with normal priors 263 (296) 130 (146) 133 (150)

Table 7.1: Information about the subsets.

the mammogram from one screening round earlier the previous or prior mammogram.
Figure 7.1 shows an example of a case that contains two temporal mammogram pairs.
The first mammogram pair consists of the referral mammogram and the mammogram
from the screening round prior to referral. In this temporal pair we call the referral
mammogram the current mammogram. This case contains a second mammogram pair
because the mass lesion is also visible on the mammogram prior to referral. In this second
mammogram pair the mammogram prior to referral represents the current mammogram
and the mammogram obtained one screening round earlier the prior mammogram. This
means that at the time the current mammogram was taken the woman was not referred
for further examination. These mammogram pairs make up 35% of the total dataset and
often contain subtle lesions that are difficult to characterise.

We constructed the dataset for the experiments by collecting all temporal mammo-
gram pairs in which the current MLO view contained exactly one visible mass lesion.
This resulted in 465 temporal mammogram pairs, 238 benign and 227 malignant. The
temporal mammogram pairs consists of 542 temporal image pairs—465 MLO and 77
CC—and 178 single view CC images with a visible mass lesion. The single view images
form the single view dataset, the temporal image pairs the temporal dataset. We con-
structed two different subsets of the temporal dataset. The first subset consists of masses
that are also visible on the prior view and is called the subset with visible priors. This
set contains 202 cases. The second subset consists of masses that were not visible on the
prior view and is therefore called the subset with normal priors. This set contains 263
cases. Table 7.1 summarises information about the subsets. We evaluated the benefit of
using temporal features on the total dataset as well as on different subsets.

7.3.2 Single View Classification

This section presents the results of our single view CAD system. Table 7.2 gives the
performance of the individual features measured as the area under the ROC curve (Az
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Feature Name Description Az

f1 spiculation 0.68

f2 spiculation 0.68

f1 mean value of f1 inside the segmented region 0.68

f2 mean value of f2 inside the segmented region 0.66

size size of the segmented region 0.58

circularity ratio between perimeter and size 0.52

calcification number of calcifications 0.54

locx relative x-location 0.56

locy relative y-location 0.50

BC continuity of the contour 0.62

Table 7.2: Summary of the single view features. For each feature we calculated the
individual Az value for the total dataset consisting of 238 benign and 227 malignant
mass lesions.

value) for the total dataset consisting of 238 benign and 227 malignant mass lesions. For
each region we constructed a single view feature vector that contained all single view
features as described in Table 7.2. Table 7.5 gives the performance obtained with this
feature vector for the total dataset, the subset with visible priors and the subset with nor-
mal priors. This table shows that there is a large difference in classification performance
between the subset with visible priors and the subset with normal priors. For the former
the average Az value is 0.79, for the latter 0.72. This may be explained by the observa-
tion that masses in the set with visible priors are often quite obvious on the current view.
This may result in more distinct tumour characteristics making it easier to characterise
these lesions. The set with normal priors on the other hand consists of masses that are
only visible on the current view. This set therefore also contains subtle masses which are
harder to classify.

7.3.3 Temporal Classification

This section describes the results of our temporal CAD programme. This programme
uses single view features extracted from the current region, similarity features, and the
four best performing difference features. The best performing difference features were
relative difference in size, difference in border continuity, and two features that represent
the difference in spiculation. Table 7.3 summarises the individual performance of the
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Figure 7.3: ROC curve for the single view (SV) feature vector and the temporal feature
vector I (T I). Fig. 7.3(a) gives the ROC curve for the total dataset, Fig. 7.3(b) gives the
ROC curve for the subsets with normal and visible priors. For each set the performance
improves when temporal features are used.
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Feature Name Description Az

Similarity Features

registration prob probability that match is correct 0.60

RGLC relative grey level change 0.63

Difference Features

size diff relative difference in size 0.61

f1 diff absolute difference in f1 0.62

f2 diff absolute difference in f2 0.62

BC diff difference in continuity of the border 0.61

Table 7.3: Summary of the temporal features. For each feature we calculated the indi-
vidual Az value.

selected temporal features on the temporal dataset.
For each region we constructed three different temporal feature vectors, see Table 7.4.

The first temporal feature vector contains single view and similarity features. The second
temporal feature vector contains single view and difference features. The last temporal
feature vector contains single view, similarity, and difference features. Table 7.5 gives
the classifier performance obtained with the different feature vectors for each dataset.
We used the CLABROC programme to compare the performance obtained with the sin-
gle view feature vector with the performance obtained with different temporal feature
vectors. We found that the use of temporal feature vector I significantly improved the
classification performance for the total dataset (P = 0.005, two-tailed) and for the subset
with visible priors (P = 0.02, two-tailed). The improvement for the subset with normal
priors however was not significant (P = 0.11, two-tailed). Figure 7.3 shows ROC curves
obtained with the single view feature vector and temporal feature vector I. For tempo-
ral feature vector II—containing single view and difference features—the classification
performance only improved for the set with visible priors. This improvement was not
significant (P = 0.22, two-tailed). For the set with normal priors the performance even
decreased, indicating that difference features may not be useful for lesions that are not
visible on the prior view. The last temporal feature vector—temporal feature vector III—
contained single view, difference, and similarity features. The use of this feature vector
improved the classifier performance for the total dataset (P = 0.05, two-tailed) and for
the subset with visible priors (P = 0.06, two-tailed).

To estimate the usefulness of difference features we investigated the difference be-
tween the classification performance obtained with temporal feature vector I and the
performance obtained with temporal feature vector III. For the subset with visible pri-
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Name Description No.

single view feature vector single view features 10

temporal feature vector I single view and similarity features 12

temporal feature vector II single view and difference features 14

temporal feature vector III single view, difference and similarity features 16

Table 7.4: Summary of the different feature vectors. The first column gives the name
of the feature vector, the second column the features that each vector contains, and the
last column the number of features in each vector. The first set only contains single view
features extracted from current lesions. The temporal feature vectors contain single view
and temporal features.

Dataset
Single View
FV

Temporal
FV I

Temporal
FV II

Temporal
FV III

total dataset 0.74±0.02 0.78±0.02 † 0.74±0.02 0.77±0.02 †

visible priors 0.79±0.03 0.83±0.03 † 0.81±0.03 0.83±0.03

normal priors 0.72±0.03 0.75±0.03 0.70±0.03 0.73±0.03
† Statistically significant.

Table 7.5: Az value and standard deviation for different feature vectors and different
subsets. The single view feature vector consists of features extracted from the current
mass lesion. Temporal features contain information of both prior and current regions.

ors both feature vectors had an equal performance, indicating that difference features do
not have an additional effect when similarity features are already used. For the subset
with normal priors the addition of difference features even lead to a decrease in perfor-
mance. These results suggest that similarity features are preferred over a combination of
similarity and difference features.

7.4 Discussion

In this chapter we present a completely automated temporal CAD programme for the
characterisation of mass lesions. This CAD programme uses two two kinds of temporal
features: difference and similarity features. We first discuss the use of difference fea-
tures. These features only improved the performance when the mass lesion was visible
on the prior view. In a previous study Hadjiiski et al. (Hadjiiski et al. 2001b) evaluated
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the effect of difference features. This work was restricted to cases which had visible
masses on the prior views. They found an improvement in Az value from 0.82 to 0.88
when adding difference features. In our study the Az value improved from 0.79 to 0.81
when using difference features on the set with visible priors. There are some differences
between both studies. In our experiments we used an automated registration programme
to determine the location of the mass lesion on the prior view while in their study a radi-
ologist indicated this location. To investigate whether this influenced the results we did
an experiment in which we used the centre of the manual segmentation on the prior view
instead of the location selected by the registration programme. In this experiment the
classification performance increased to 0.82 for the set of visible masses. This result dif-
fers not much from the proposed CAD method indicating that we can use our automated
registration programme instead of manual annotations. Another difference between both
experiments concerns the used difference features. Hadjiiski et al. used texture differ-
ence features, while this study included only spiculation and morphological difference
features. Texture features may be useful when the mass lesion is subtle on the prior view.
The last difference between both experiments concerns the dataset. In the Netherlands
the referral percentage is very low, about 1.0%. We believe that because of this low refer-
ral rate benign cases in our dataset are biased towards cases that show temporal changes,
as these cases look more suspicious and are thus earlier referred. Benign cases that re-
main constant between two screening rounds are often not referred in the Netherlands.
Therefore the dataset we use may have been more difficult to improve by adding features
that capture temporal changes.

The classification performance for masses with normal priors decreased when using
difference features. We can explain this because the CAD programme always follows
the same procedure and does not distinguish between lesions that are visible and lesions
that are not visible on the prior view. When the lesion is not visible it is not possible to
determine an appropriate contour of the prior region and the segmentation programme
will use accidental mammographic structures to determine a contour of the prior region.
Consequently, features that depend on this contour will not be meaningful. The addition
of these valueless features may result in a lower classification performance.

The second group of temporal features–the so-called similarity measures—determine
whether the region on the current view and a corresponding region on the prior view are
similar in appearance. These features improved the classification performance for masses
with visible priors and for masses with normal priors. These features therefore seem more
promising than difference features.

The first similarity feature is the registration score. This feature combines three regis-
tration measures including the correlation between the current region and a similar region
on the prior. Results show that a very low registration score is more often seen for ma-
lignant masses than for benign masses and vice versa. The second similarity feature is
the relative grey level change. Causes for an increase in relative grey level are twofold.
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First, a mass that becomes more dense between two screening rounds will have a higher
relative grey level on the current view than on the prior view. Second, an increase in size
on average also results in a corresponding change in relative grey level as mass tissue on
average is more dense than normal breast tissue. This feature is thus a measure of the
change in contrast as well as the change in size. An advantage of this feature is that it
is useful for masses with visible and for masses with normal priors because it does not
depend on the contour of the prior region.

Difference features on the other hand are only useful for masses that are visible on
both the prior and the current view. Therefore the relative grey level change is preferred
above the temporal features that measure the difference in size or contrast.

Figures 7.2, 7.4, and 7.5 show some examples to illustrate potential benefits and
drawbacks of including temporal change information into a CAD system. For these
examples we compared the malignancy score from the single view classifier with the
score from the temporal classifier. For the temporal classifier we used temporal feature
vector I containing single view and similarity features. Figures 7.2(a) and 7.2(c) show
examples where the temporal classifier performed better than the single view classifier.
Figure 7.2(a) concerns a benign mass that is almost identical in appearance on the prior
and the current view. Therefore the use of temporal features resulted in a better charac-
terisation of the lesion. Figure 7.2(c) shows a malignant mass that is not visible on the
prior view. The whole area on the prior view is “empty” resulting in a low registration
score and a high grey level change. Consequently the temporal classifier assigned this
lesion a higher malignancy score than the single view classifier.

Figure 7.4: Example where the temporal classifier performed worse than the single view
classifier. The image shows a new benign mass that was not yet present on the previous
screening mammogram.
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Figure 7.5: Example where the temporal classifier performed worse than the single view
classifier. The image shows a malignant mass that is similar in appearance on prior and
current views.

Figure 7.2(b) shows an example of a benign mass where both classifiers had equal
performance. As the mass has a suspicious appearance both single view and temporal
classifier assigned a high malignancy score to this lesion. The malignancy score did not
change by adding temporal features. Figure 7.4 and 7.5 show two examples where the
single view classifier performed better than the temporal classifier. Figure 7.4 shows a
malignant mass that is also visible on the prior view and similar in appearance on both
views. Therefore both temporal features were suggestive for a benign lesion resulting in a
lower malignancy score. Figure 7.5 concerns a benign mass that is subtle on the prior and
obvious on the current view. Therefore both temporal features suggested the presence of
a malignant lesion resulting in a high malignancy score. These examples illustrate that
benign and malignant masses sometimes show similar temporal behaviour. Temporal
features should therefore always be used in conjunction with single view features.

In summary we designed a CAD system that includes temporal information for the
characterisation of mass lesions. The classification performance significantly improved
when adding temporal features compared to a single view CAD system. Results obtained
in this study suggest that similarity features are more useful than difference features, both
for masses that are visible on the prior view and for masses that are new.



Chapter 8

Effect of Temporal CAD on
Radiologists’ Performance 1

In this chapter we investigate the use of a temporal CAD programme to help radiologist
with the characterisation of mass lesions. For this purpose we set up an observer study
with six radiologists. Each radiologist rated 198 cases, 99 containing a benign mass and
99 containing a malignant mass. For each case the mammograms from two consecutive
screening rounds were available. The mass was visible on the prior view in 40% of the
cases. Independently a CAD programme also rated each mass lesion making use of infor-
mation from prior and current views. The following reading situations were compared:
single reading, independent reading with CAD, and independent double reading.

8.1 Introduction

At this moment mammography is the method of choice for breast cancer screening. An
important task of radiologists is to classify mammographic abnormalities as benign or
malignant. The BI-RADS system provides criteria to classify each abnormality as be-
nign, probably benign, suspicious, or highly suggestive of malignancy (D’Orsi & Kopans
1997). Despite these criteria interpretation and subsequent classification of abnormali-
ties remains a difficult task. Studies show that misinterpretation is an important cause of
missing breast cancer (Bird et al. 1992; Harvey et al. 1993). Furthermore, interpretation
errors lead to unnecessary additional examinations. Only about 20%-50% of patients
referred for biopsy are found to have a malignancy. The effect of an improvement in
classification accuracy will thus be twofold. First, the cancer detection rate will increase.

1The content of this chapter has been published previously in Timp et al. (2006a).
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Second, the positive predictive value of mammography will increase. Therefore we con-
sider it important to investigate whether an automated CAD system can improve the
characterisation accuracy of radiologists.

There have been some studies that evaluate the additional effect of CAD systems on
radiologists’ assessment of mass lesions. Most studies compare the performance of ra-
diologists with and without using CAD. Chan et al. (1999) studied the effect of using
a CAD system on radiologists’ ability to characterise mass lesions and found that the
performance significantly (P < 0.001) increased when using CAD. Huo et al. (2002)
performed an observer experiment to evaluate the effect of a CAD system on the char-
acterisation of benign and malignant masses using multiple views from the same exam-
ination. In their study the performance of the radiologists significantly (P < 0.001)
improved when using computer aid. These CAD systems however only used the current
view to characterise mass lesions.

Radiologists on the other hand routinely compare the current view with previous
screening examinations when assessing mass lesions. Studies show that the performance
of radiologists improves when using prior views (Varela et al. 2005; Hadjiiski et al.
2001b). In a recent study Hadjiiski et al. (2004) evaluated the effect of a CAD system that
includes information from prior views. This study was restricted to mass lesions that were
visible in retrospect. They found that the performance of radiologists significantly (P =

0.005) increased when using CAD. It should be remarked that in this study radiologists
read digitised regions of interest extracted from temporal image pairs. This differs from
the usual clinical setting where radiologists read a complete mammogram to estimate the
malignancy of a lesion.

The purpose of this study is to evaluate the potential benefit of a temporal CAD sys-
tem on radiologists’ interpretation of mass lesions. In the previous chapter we evaluated
the performance of this temporal CAD system and found that the characterisation accu-
racy significantly improved when using this temporal CAD system compared to a single
view CAD system. Unlike other observer experiments with CAD this experiment more
closely resembles clinical practice as 1) both radiologist and the CAD programme use
prior views and 2) the dataset consists of masses that are visible in retrospect as well
as masses that are new, and 3) radiologists read the mammograms as in the usual clini-
cal setting on a dedicated mammography workstation. Furthermore we simulate double
reading and compare this with independent reading with CAD.

The chapter is organised as follows. First we describe the dataset used for the ex-
periments. In Subsection 8.2.2 we shortly summarise the single view and temporal CAD
programme. Subsection 8.2.3 describes the observer study. Section 8.3 presents the re-
sults with a discussion in the last section.
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8.2 Description CAD Programme and Observer Experi-
ment

8.2.1 Dataset

The mammograms used in this study all came from the Dutch Breast Cancer Screen-
ing Programme. All women aged 50-75 are invited bi-annually to participate in this
programme. Two mammographic projections—medio lateral oblique (MLO) and cranio
caudal (CC)—are obtained at the initial screening in this programme. At subsequent
screenings only medio lateral views are obtained, unless there is an indication that addi-
tional cranio caudal views would be beneficial.

At our institution we have a collection of consecutive cases with suspect abnormali-
ties that were referred in the screening programme between 1996 and 2000. These cases
contain mammograms at referral and mammograms of all previous screening rounds.
Figure 8.1 shows an example of three consecutive mammograms. From the collection

Figure 8.1: Example of three consecutive mammograms for the same women. The last
mammogram is the mammogram at time of referral. The other mammograms are ob-
tained at previous screening rounds.

of cases we composed temporal mammogram pairs that consist of all images from two
consecutive screening rounds. We call the most recent mammogram the current mammo-
gram and mammograms from earlier screening rounds previous or prior mammograms.
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Characteristic No.

Biopsied 99

Invasive ductal carcinoma 71

Invasive lobular carcinoma 18

Tubular carcinoma 3

Mucineus/colloid carcinoma 2

Intracystic carcinoma with invasion 1

Intracystic carcinoma without invasion 2

Ductal carcinoma in situ 2

Mammographic lesion size 99

<11 mm 14

11–20 mm 59

>20 mm 26

Lesion type 99

Mass 90

Architectural distortion 7

Asymmetry 2

Table 8.1: Histopathologic and mammographic characteristics of malignant cases. Le-
sion size corresponds to the mammographic annotation made by the study radiologist.

We then selected mammograms that fulfilled the following requirements: 1) the current
mammogram contained both MLO and CC views, and 2) at least one view of the current
mammogram contained a mass, asymmetry, or architectural distortion, all referred to as
mass (lesion) in the sequel. Of all referral mammograms that met these criteria we ran-
domly selected 171 cases, 87 malignant and 84 benign. In addition, we selected all cases
in which the last mammogram before referral met these criteria. These were 27 cases,
12 malignant and 15 benign. Combining the two selections we obtained 198 cases, 99
malignant and 99 benign.

Table 8.1 and 8.2 show histopathologic and mammographic characteristics for benign
and malignant cases. Fourteen cases contained micro-calcifications in addition to the
mass, of which ten were malignant and four benign.

Because of the selection criteria, current mammograms always had MLO and CC
views. Prior mammograms always had MLO views, while CC views were only available
for 21.7% of the cases (43/198, 22 malignant and 21 benign). All 99 malignant cases
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Characteristic No.

Biopsied 39

Solitary cyst 17

Fibroadenoma 4

Fibrocystic change 2

Atypical ductal hyperplasia 5

Other benign lesion 8

Normal tissue 3

Mammographic lesion size 99

<11 mm 20

11–20 mm 54

>20 mm 25

Lesion type 99

Mass 90

Architectural distortion 7

Asymmetry 2

Table 8.2: Histopathologic and mammographic characteristics of benign cases. Lesion
size corresponds to the mammographic annotation made by the study radiologist.

were biopsy proven. Of the benign cases 39 were histologically confirmed, while the
remaining 60 cases had at least 6-month follow-up.

All visible abnormalities were annotated by or under supervision of an experienced
radiologist, called the study radiologist, using all available information such as pathology
results when a biopsy had been performed. In about 40% of the cases the lesion was also
visible on previous screening mammograms. The images were digitised with a laser
scanner (CFS300, Canon) at a pixel size of 50 µm and subsequently down sampled to a
final resolution of 100 µm maintaining the original grey scale resolution of 12 bits.

8.2.2 Computer Aided Diagnosis System

Our CAD programme consists of a single view part and a temporal part. Both parts are
described in detail in Chapter 7. Below we shortly summarise both parts.
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Single View CAD Part The single view CAD programme starts with the segmenta-
tion of all current lesions that have been manually outlined by the study radiologist. The
segmentation algorithm we use for this purpose requires a seed point in the centre of the
mass. For details about the segmentation algorithm see Chapter 3. As seed point we use
the mathematical centre of the contour delineated by the study radiologist. For each seg-
mented region different single view features are calculated: spiculation measures, border
features and morphological features. The total number of calculated features for each
lesion is ten. As classifier we used a Support Vector Machine. Training and testing of
the classifier were done completely independent using a 20 fold cross-validation scheme.
For each view the classifier output represents the image based malignancy score, where
small values correspond with benign ratings and large values with malignant ratings. The
malignancy scores from both MLO and CC views are averaged to obtain a case based
malignancy score that indicates the probability that the lesion is malignant. This score
is called the current view malignancy score as it is based on features extracted from the
current lesion.

Temporal CAD Part The temporal CAD part consists of two steps. In the first step the
regional registration technique described in Chapter 5 finds for each lesion on the current
view a corresponding location on the prior view. This location on the prior view is used as
a seed point for our segmentation algorithm (see Chapter 3). This segmentation algorithm
determines a contour for the prior region. Then several features are determined for the
segmented region on the prior view. For each current region two temporal features are
determined that indicate whether the current region and the corresponding region on the
prior view are similar in appearance. These features are designed in a way such that they
can be used for masses that are visible on the prior view and for masses that are new. In
total we calculate twelve features for each region. As classifier we use a Support Vector
Machine. Training and testing of the classifier are implemented as described above for
the single view classifier. The temporal classifier uses single view and temporal features
to determine for each lesion an image based malignancy score. The malignancy scores
from available CC and MLO projections are averaged to obtain for each lesion a case
based malignancy score that indicates the probability that a lesion is malignant. This
score is called the temporal malignancy score.

8.2.3 Observer Study

A panel of six radiologists, not including the study radiologist, participated in the ob-
server study. Each of the six radiologists rated 99 benign and 99 malignant cases with
and without the use of prior views. The reading sessions were structured as follows. First
only the current mammogram was shown. By pressing a key the radiologist could see the
contour drawn by the study radiologist. The radiologist then rated each lesion on a scale
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between 0 and 100, where a value near 100 indicates a high likelihood of malignancy.
Because of our study design all current mammograms had MLO and CC projections.
Each radiologist therefore had access to information from both CC and MLO views. Af-
ter the radiologist had recorded his score the prior mammogram was displayed, and the
radiologist could change his rating accordingly. In this study we only used the second
rating that the radiologists gave when both prior and current views were available. All
cases were presented in a randomised order.

The mammograms were displayed on this dedicated mammography workstation (Me-
vis BreastCare, MBC-SCR1, Bremen, Germany). In a recent study Roelofs et al. (2005)
found that radiologists perform equally well reading digitised mammograms on a ded-
icated workstation as reading the original films. The workstation was equipped with
two high-resolution CRT monitors (BARCO, MGD 521, 300 Cd/m2, using BarcoMed
5MP1H 12 bit graphics boards), and a dedicated key-pad to access the main functions
with a single keystroke. The CRT displays had a spatial resolution of 2,048 x 2,560 pixels
each, which is sufficient to display one image at 100 µm. Initially, images were displayed
at low spatial resolution (200 µm), in such a way that all images included in a case could
be displayed simultaneously. Current MLO and CC views appeared in the lower half of
the left and right monitor. Prior views were displayed in the same way in the upper half of
both monitors. Full spatial resolution (100 µm) images could subsequently be displayed
by pressing a key of the dedicated key-pad. Images from the same breast but different
views could also be displayed on both monitors at the same time. The same was possible
for images of the same breast and same view but different screening rounds. This made
it possible to analyse temporal changes in a simple and user-friendly way. Images were
preprocessed using an unsharp-masking technique (Roelofs et al. 2003) to compensate
for the decrease of sharpness with respect to the original films due to digitisation and
electronic display.

Five of the six readers in this study were attending radiologists with breast cancer
screening experience. The other radiologist was a radiology resident in her last year
who had specialised in mammography. All participants received a training session be-
fore the observer study started to become familiar with the soft-copy reading system and
the design of the experiment. The training set consisted of 25 cases. The true diagno-
sis was given immediately after each training case. During training, radiologists were
encouraged to make use of the different tools provided by the soft-copy reading system.
General information about the data set was provided to the radiologists. They were in-
formed that the number of benign and malignant cases was about equal, and that all cases
were referrals from a screening programme.
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8.2.4 Data Analysis

The performance of each radiologist was evaluated for the three different reading modes
using ROC methodology. The classification accuracy was quantified with the area under
the ROC curve (Az value).

The Az values for single reading and independent reading with CAD were esti-
mated by using the Dorfman-Berbaum-Metz (DBM) method for analysis of multi-reader
multi-case data (Dorfman et al. 1992). In this method the maximum likelihood esti-
mation of the binormal distributions is fitted to the observer ratings to obtain an ROC
curve. This method has been widely adopted in recent years for analysing experimental
data obtained in a multi-reader multi-case (MRMC) study design (Hadjiiski et al. 2004;
Beiden et al. 2002). It has the great advantage that both reader and case variability are
taken into account in a proper way, such that generalisation to both the population of
readers and cases is permitted. We used the publicly available LABMRMC software
(Metz et al. 1998a) for MRMC computations. To estimate the potential benefit of using
the CAD system we independently combined the malignancy ratings of each radiologist
and the CAD system. We first linearly scaled the ratings of each radiologist and the CAD
system between zero and one hundred. We then assigned each lesion a combined rating
computed as the arithmetic mean of the CAD malignancy rating and a radiologists ma-
lignancy rating. The multi-reader multi-case DBM method analysed the average scores
to estimate Az values for independent reading with CAD. The statistical significance of
the difference in Az between reading without CAD and independent reading with CAD
was also estimated by using the DBM method (Metz et al. 1998a).

To simulate double reading we combined for each lesion the malignancy ratings of
two radiologists. For each radiologist this resulted in five different double reading re-
sults. For each double reading result we calculated an ROC curve. This resulted in five
different ROC curves for each radiologist. Each ROC curve is completely described by
two parameters that characterise the underlying normal distributions. For each radiolo-
gist we used these parameters to determine an average ROC curve and the corresponding
Az value (Obuchowski 2005). The Student’s t-test for paired data was used to assess the
significance of differences between Az values of the double reading mode on one side
and the single reading mode and reading with CAD on the other side.

8.3 Results Reading with CAD and Double Reading

The performance, measured as area under the ROC curve, was calculated for each radiol-
ogist for the different reading modes: single reading, independent reading with CAD, and
independent double reading. Table 8.3 lists the individual and the mean performances of
the radiologists for the three reading modes. The Az value of the stand alone CAD pro-
gramme was 0.81. The average Az value for the radiologists was 0.80 for single reading.
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For all radiologists the performance improved for independent reading with CAD. The
average Az value significantly increased to 0.83 for reading with CAD (P < 0.05, DBM
method; P = 0.02, Student’s paired t-test). Table 8.3 shows that the performance of
radiologists with a better performance than the CAD system (number two and number
five) improved as much as the performance of radiologists with a lower performance than
the CAD system.

The average performance for independent double reading was 0.81. The difference
between single reading and independent double reading was not significant (P = 0.12,
Student’s paired t-test). For independent double reading the performance increased for all
radiologists except for the best performing radiologist (number two). The least perform-
ing radiologist, number three, benefited most from independent double reading. These
results suggest that the benefit that can be obtained with double reading depends on the
performance of the individual radiologist. The difference between reading with CAD
and independent double reading was not significant (P = 0.08, Student’s paired t-test).

Figure 8.2 shows average ROC curves for the different reading modes. For each
reading mode the average ROC curve is obtained by averaging the fitted parameters of
the individual ROC curves of each radiologist (Obuchowski 2005).

Radiologist Single Reading Ind. Reading with CAD Ind. Double Reading

1 0.792 ±0.034 0.805±0.031 0.800 ±0.023

2 0.825 ±0.029 0.835±0.028 0.820 ±0.016

3 0.749 ±0.034 0.809±0.030 0.798 ±0.025

4 0.801 ±0.031 0.839±0.028 0.809 ±0.024

5 0.813 ±0.031 0.855±0.026 0.825 ±0.021

6 0.790 ±0.032 0.829±0.029 0.814 ±0.019

average Az 0.796 0.829 0.811

Table 8.3: Az±standard deviation for each radiologist for the three different reading
conditions: single reading, independent reading with CAD and independent double read-
ing.

8.4 Discussion

In this study we investigated the effect of three different reading modes on the charac-
terisation of mass lesions on serial mammograms: single reading, independent reading
with CAD, and independent double reading. We implemented independent reading with
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Figure 8.2: ROC curves for the three reading modes: single reading, independent double
reading and independent reading with CAD.

CAD by averaging the score of each radiologist with the score from the CAD system
for all mass lesions. Using the CAD system in this way improved the classification per-
formance for each radiologist, also for the best performing one. The average Az value
significantly increased from 0.80 to 0.83 when CAD was used. From Figure 8.2 we see
that this improvement mainly concerns a better characterisation of benign lesions. Using
CAD in this way may thus lead to a decrease in the number of false positives at the same
sensitivity level. Furthermore, we found that for each radiologist the performance of in-
dependent reading with CAD was equal or higher than the performance of the standalone
CAD system, which was 0.81.

Some studies have been done to evaluate the effect of using a CAD system on the
ability of radiologists to discriminate between benign and malignant lesions (Chan et al.
1999; Huo et al. 2002; Hadjiiski et al. 2004). These studies all show an improvement in
characterisation accuracy when a CAD system is used. An important difference between
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this study and existing studies is that the present CAD system also uses information ex-
tracted from prior views. To our knowledge there is only one other study where the CAD
system used temporal information as well (Hadjiiski et al. 2004). In that study they found
that using a CAD system with temporal analysis improved the classification performance
of radiologists. In the current study we tried to resolve some of the limitations of (Hadji-
iski et al. 2004). First, in (Hadjiiski et al. 2004) the observers read ROI’s extracted from
temporal image pairs. In the current study observers read whole mammograms, including
views from the left and right breast and from different projections. Second, in (Hadjiiski
et al. 2004) the performance of the standalone CAD system was better than the perfor-
mance of radiologists using CAD. An explanation may be that the reading conditions for
the radiologists were not optimal, resulting in a significantly lower performance for each
individual radiologist than for the CAD system. In the current study we found that the
performance of each individual radiologist using CAD was higher than the performance
of the standalone CAD system. This might be caused by the fact that the performance
of radiologists and the CAD system were comparable. It should also be noted that in
our study the ratings from each radiologist and the CAD system were independently
combined while in (Hadjiiski et al. 2004) radiologists used CAD to adjust their own as-
sessment. Last, the CAD system used in (Hadjiiski et al. 2004) was restricted to mass
lesions that were visible in retrospect. The CAD system used in our study is suited for
masses that are visible on retrospect as well as for masses that are new.

A CAD system for mass characterisation may also be helpful for screening purposes.
During screening two types of perception errors are made: search errors and interpreta-
tion errors. Search errors are defined as lesions that are overlooked or only briefly fixated.
Interpretation errors conern lesions that are missed due to wrong decisions. Some studies
suggest that the majority of errors in radiological detection tasks may be due to incorrect
interpretation of lesions (Karssemeijer et al. 2003; Manning et al. 2004). The use of CAD
systems to characterise mass lesions may result in less interpretation errors. Ultrasound
also has an important role in characterising lesions as benign or malignant. In many
screening programmes however mammograms are read in afterwards in batches such
that ultrasound can not be used. Radiologists then base their decision to refer a woman
on mammography results only. Using CAD in these situations may lead to a decrease in
the number of false positive referrals while maintaining the same cancer detection rate.

Additionally, in this study we compared the performance of independent reading with
CAD with the performance of independent double reading. To implement independent
double reading we combined the malignancy ratings from each pair of radiologists. We
found that double reading improves the classification performance, although this differ-
ence was not significant. The statistical difference in performance between independent
reading with CAD and independent double reading was also not significant. This sug-
gests that the CAD system may be used as an independent additional reader. For instance,
a single reader with CAD might be used to select cases with suspicious abnormalities for
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further inspection by a second reader, who then makes the final decision whether re-
ferral is necesary. This approach resembles double reading with arbitration, which is
common in screening in the United Kingdom, where a third reader assesses those mam-
mograms for which two screening radiologists do not reach consensus (Smith-Bindman
et al. 2003).

In summary we find that using a CAD system with temporal analysis can help radiol-
ogists to interpret mass lesions. Further studies are needed to investigate the performance
of CAD systems in clinical settings.
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screening and mortality from breast cancer: the Malmö mammographic screening trial.
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Summary

Breast cancer is the most common type of cancer in women, with about one in ten women
developing the disease in her lifetime. It is also the leading cause of cancer deaths for
women aged between 35 and 55. The key to curing breast cancer is early detection and
prompt treatment. A physical examination, mammography, and breast self-examination
make up the conventional early detection approach. Recommendations for breast cancer
screening vary from country to country according to the views of different organisations
who recommend the screening. In the Netherlands the screening programme offers all
women between 50 and 70 years a biennial mammography screening examination.

Although mammography is the most effective technology presently available for
breast cancer screening, it still has some important limitations. First, during screen-
ing about 20% of all malignant breast tumours are ‘missed’. The most important causes
of these false negative screening exams are detection and interpretation errors. Second,
the number of false positive detections is rather high. More then half of the women who
are referred for further examination turn out not to have breast cancer. Third, accurate
mammography interpretation depends heavily on the reader. To overcome some of these
limitations computer aided diagnosis and detection (CAD) programmes are being devel-
oped. These programmes help radiologists with the detection and interpretation of mass
lesions. Studies have shown that CAD systems may improve the diagnostic accuracy of
mammography.

At the moment most CAD programmes only use information from a single view to
detect and characterise mass lesions. Chapter 2 describes our single view CAD pro-
gramme that separately processes each image. This programme consists of two parts. In
the first part an algorithm calculates at each location inside the breast area several fea-
tures that measure the presence of either a spiculated lesion or a focal mass lesion. A
classifier combines these features into a score that represents the likelihood that a mass
is present at that location, the so-called mass likelihood. In the second part locations
with a high mass likelihood are selected for further processing: segmentation and fea-
ture extraction. For segmentation we developed a new method that is described in detail
in Chapter 3. The method uses an optimisation technique—dynamic programming—to
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find the best contour for each suspicious region. The method proved to be a robust tech-
nique to segment mass lesions from surrounding tissue. Compared to existing methods
the new method performed significantly better. After segmentation several features are
calculated for each region. A second classifier combines these features into a malignancy
score representing the likelihood that the region is malignant.

Although the single view CAD programme performs quite well, the number of false
positive detections is still rather large. An improvement might be obtained by using
information from several views such as images from different projections of the same
breast, images of the right and left breast or images obtained at different points in time.
In this thesis we investigate whether using previous screening examinations is beneficial
for a CAD system. We expect that temporal information may improve the detection and
classification performance of a CAD system for the following reasons. First, comparing
the current mammogram with mammograms from previous screening rounds may bring
to attention subtle signs of malignancy that might have been overlooked otherwise. Sec-
ond, suspicious regions on the current view can be evaluated more precisely when the
region is compared with the same region on the previous view. In Chapter 4 we first
study how malignant masses change in time. In that study we find that on average ma-
lignant masses increase in size and contrast between two consecutive screening rounds.
About one quarter of the masses however stays more or less constant or decreases in size.
Further inspection of these masses shows that these can be classified in the following cat-
egories: architectural distortions that become more compact, masses that are situated on
the border of the mammogram, and masses that indeed decrease in size. This suggests
that malignant masses differ in temporal behaviour.

In the remainder of the thesis we develop and evaluate a temporal CAD programme.
The temporal CAD programme consists of three steps: global registration, regional regis-
tration, and extraction of temporal features. Chapter 5 presents a new automatic regional
registration method to find corresponding masses on prior and current views. The method
starts with a segmented region on the current view. Based on the global registration we
make an initial estimate of the location on the prior view where the lesion most likely
developed. We define a search area around this initial estimate and calculate three regis-
tration measures at each location inside the search area to quantify how well this location
matches the region on the current view. As registration measures we use the grey scale
correlation between the region on the current view and a candidate region on the prior
view, the mass likelihood of the location on the prior view, and the distance from the
location on the prior view to the initial estimate. Based on these measures we select the
best location. Our segmentation algorithm then determines a contour for the selected
region on the prior view. After each current region has been linked to a region on the
prior view temporal features are calculated. We designed two kinds of temporal features:
difference features and similarity features. Difference features represent changes be-
tween feature values extracted from the prior and the current region. Similarity features



155

measure whether both regions are comparable in appearance.
In Chapter 6 we apply the temporal CAD programme to improve the detection of

masses. As regional registration method we use a simple variant of the method that has
been described in Chapter 5. As temporal features we only use difference features. FROC
(free response operating characteristic) analysis shows a small improvement in detection
performance when temporal features are used in addition to the single view CAD system.

In Chapter 7 we evaluate the use of a temporal CAD programme to classify lesions
as malignant or benign. For this purpose we use the complete regional registration pro-
gramme as described in Chapter 5. As temporal features we use both difference and
similarity features. We find that the classification performance measured as the area un-
der the ROC curve significantly improves when temporal features are used.

Finally, in Chapter 8, we investigate the effect of a temporal CAD programme on the
characterisation performance of radiologists and compare this with independent double
reading, where the scores of two radiologists are combined. A total of six radiologists
participated in the observer study. Each radiologist rated 198 cases, 99 containing a be-
nign mass and 99 containing a malignant mass. Similarly our temporal CAD programme
rated each lesion. We then compared the following reading modes: single reading, in-
dependent reading with CAD—that is independent combination of the CAD score and a
radiologists score—and independent double reading. Results show that the performance
of radiologists significantly improves for independent reading with CAD and for inde-
pendent double reading. The improvement obtained by reading with CAD however was
larger than the improvement obtained by independent double reading. From this study
we conclude that a temporal CAD programme may be useful to help radiologists with
the interpretation of mass lesions. Further studies are needed to investigate the best way
a CAD system can be used in clinical settings.





Samenvatting

Borstkanker is de meest voorkomende soort kanker bij vrouwen. Ongeveer 1 op de 10
vrouwen zal ooit in haar leven borstkanker krijgen. Daarnaast is borstkanker in Neder-
land de meest voorkomende vorm van kanker waaraan vrouwen overlijden. Een vroege
detectie van borstkanker is belangrijk omdat dit de kans op genezing aanzienlijk vergroot.
De meest gebruikte technieken voor vroegtijdige detectie zijn zelfonderzoek, klinisch on-
derzoek en mammografie. Richtlijnen voor vroegtijdige detectie verschillen van land tot
land. In Nederland worden alle vrouwen van 50 tot 70 jaar elke twee jaar persoonlijk
uitgenodigd om een screeningsmammogram te laten maken.

Alhoewel mammografie op dit moment de meest effectieve methode is voor screen-
ing op borstkanker, zijn er ook enkele beperkingen. Ten eerste wordt nog steeds circa
20% van de tumoren ‘gemist’ tijdens de screening. De belangrijkste oorzaken hiervan
zijn detectiefouten en interpretatiefouten. Ten tweede is het aantal fout positieve detecties
te hoog. Meer dan de helft van de vrouwen die doorverwezen worden blijkt uiteindelijk
geen borstkanker te hebben. Ten derde hangt een goede beoordeling van een mammo-
gram erg af van de betreffende radioloog. Om een aantal van deze problemen te vermin-
deren zijn er computer programma’s ontwikkeld met als doel de detectie en interpretatie
van tumoren te verbeteren, de zogenoemde computer aided detection/diagnosis (CAD)
programma’s. Studies tonen aan dat het gebruik van CAD programma’s kan leiden tot
een verbetering van de diagnostische accuraatheid van mammografie.

Op dit moment maken de meeste CAD programma’s slechts gebruik van één enkele
opname. Hoofdstuk 2 beschrijft ons CAD programma waarvoor de input bestaat uit een
enkele afbeelding. Dit programma bestaat uit twee delen. Eerst wordt op iedere locatie
in het borstgebied een aantal tumorkenmerken uitgerekend zoals de aanwezigheid van
een verdacht lijnenpatroon (spiculation) en de aanwezigheid van een heldere densiteit.
Een classifier combineert deze kenmerken in een score die aangeeft hoe waarschijnlijk
het is dat er een tumor op de betreffende locatie aanwezig is, de zogeheten mass likeli-
hood. In het tweede deel van het programma worden de meest verdachte locaties ges-
electeerd voor verdere bewerking: segmentatie en extractie van tumorkenmerken. Voor
segmentatie hebben we een methode ontwikkeld die in staat is zeer nauwkeurig en snel
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de contour van een verdachte regio te bepalen. Hoofdstuk 3 beschrijft deze methode in
detail. De methode gebruikt een optimalisatietechniek—dynamic programming—om de
beste contour voor iedere regio te vinden. In vergelijking met andere segmentatiemeth-
oden presteert de nieuwe methode significant beter. Voor iedere gesegmenteerd regio
worden vervolgens diverse kenmerken bepaald. Een tweede classifier combineert deze
kenmerken in een malignancy score, die aangeeft hoe waarschijnlijk het is dat de regio
een maligniteit bevat.

Een probleem met huidige CAD programma’s is het hoge aantal fout positieve de-
tecties. Het aantal fout positieve detecties zou kunnen verminderen wanneer CAD pro-
gramma’s, net als radiologen, gebruik zouden maken van informatie uit meerdere op-
namen zoals opnamen uit verschillende richtingen, opnamen van de linker en de rechter
borst en opnamen verkregen op verschillende tijdstippen. In dit proefschrift onderzoeken
we of het gebruik van voorgaande screeningsmammogrammen een positief effect heeft
op de performance van een CAD systeem. We verwachten dat het gebruik van tem-
porele informatie zal leiden tot een verbetering van zowel de detectie als de interpretatie
van tumoren om de volgende redenen. Ten eerste kan het vergelijken van opeenvolgende
mammogrammen kleine en subtiele afwijkingen aan het licht brengen die anders over het
hoofd gezien zouden zijn. Ten tweede kan een verdachte regio beter beoordeeld worden
wanneer deze vergeleken wordt met dezelfde regio op het voorgaande mammogram. In
Hoofdstuk 4 bestuderen we welke veranderingen in de tijd optreden bij maligne tumoren.
In deze studie zien we dat gemiddeld genomen maligne tumoren groter worden en dat
het contrast toeneemt tussen twee opeenvolgende screenings. Een aanzienlijk deel van de
tumoren echter verandert niet in grootte of wordt zelfs kleiner. Nadere inspectie laat zien
dat we deze lesies in verschillende categorien kunnen indelen: architectuurverstoringen
die weliswaar kleiner maar ook meer compact worden, lesies gelocaliseerd op de rand
van het mammogram en lesies die echt kleiner worden. Hieruit kunnen we concluderen
dat er veel verschil is in het temporele gedrag van maligne tumoren.

De rest van dit proefschrift wijden we aan de ontwikkeling en evaluatie van een tem-
poreel CAD programma. Het temporele programma bestaat uit drie onderdelen: globale
registratie, regionale registratie en extractie van temporele kenmerken. Hoofdstuk 5 pre-
senteert een nieuwe methode voor regionale registratie met als doel corresponderende
lesies op huidige en voorgaande mammogrammen aan elkaar te koppelen. De meth-
ode begint met een gesegmenteerde regio op het huidige mammogram. Op basis van de
globale registratie maken we dan een eerste schatting van de locatie op het voorgaande
mammogram waar deze lesie waarschijnlijk ontstaan is. Vervolgens definieren we ron-
dom deze initiele schatting een zoekgebied. Op iedere locatie in dit zoekgebied rekenen
we drie registratiematen uit: grijswaardecorrelatie tussen de regio op het huidige beeld
en een kandidaat region op het voorgaande beeld, de mass likelihood van de locatie op
het voorgaande beeld en de afstand tot de initiele schatting. Op basis van deze maten
selecteren we de beste locatie. Daarna bepaalt ons nieuwe segmentatie algorithme de
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contour van de geselecteerd regio op het voorgaande beeld. Tenslotte bepalen we twee
soorten temporele kenmerken: verschil kenmerken en gelijkenis kenmerken. Verschil
kenmerken meten de verandering in tumorkenmerken tussen de regio op het voorgaande
beeld en de regio op het huidige beeld. Gelijkenis kenmerken meten of twee regio’s er
ongeveer hetzelfde uit zien.

In Hoofdstuk 6 gebruiken we het temporele CAD programma voor de detectie van
tumoren. Als regionale registratie methode gebruiken we een simpele versie van de meth-
ode die beschreven is in Hoofdstuk 5. Als temporele kenmerken gebruiken we alleen ver-
schil kenmerken. FROC (free response operating characteristic) analyse laat een kleine
verbetering zien wanneer het CAD programma gebruik maakt van temporele kenmerken.

In Hoofdstuk 7 evalueren we het temporele CAD programma om lesies te classi-
ficeren als benigne of maligne. Het temporele CAD programma gebruikt eerst de re-
gionale registratie methode uit Hoofdstuk 5 om iedere lesie op het huidige mammogram
te linken aan een regio op het voorgaande mammogram. Daarna worden beide tem-
porele kenmerken uitgerekenend: verschil kenmerken en gelijkenis kenmerken. Uit deze
studie blijkt dat de classificatie performance verbetert door het gebruik van temporele
kenmerken.

Tenslotte beschrijven we in Hoofdstuk 8 een studie die we uitgevoerd hebben om
te bepalen welk effect een temporeel CAD programma kan hebben op de diagnostische
accuraatheid van radiologen. In totaal deden zes radiologen mee met deze studie. Iedere
radioloog beoordeelde 198 cases, waarvan er 99 een benigne en 99 een maligne lesie
bevatten. Het temporele CAD systeem beoordeelde dezelfde cases. We vergeleken de
volgende situaties: individuele beoordeling door één radioloog, onafhankelijke combi-
natie van de beoordelingen van twee radiologen en onafhankelijke combinatie van de
resultaten van het temporele CAD systeem en een radioloog. De resultaten laten zien dat
de interpretatie van tumoren verbetert voor zowel onafhankelijke combinatie van de beo-
ordelingen van twee radiologen als voor onafhankelijke combinatie van de beoordeling
van een radioloog en het CAD programma. De verbetering verkregen door het gebruik
van het CAD programma was het grootste. Hieruit blijkt dat een temporeel CAD systeem
nuttig kan zijn om radiologen te helpen met de beoordeling van lesies. Er is meer onder-
zoek nodig om te bekijken op welke manier een CAD systeem het beste in de praktijk
gebruikt kan worden.
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